

Journal of
Information
Systems
Education

Volume 34

Issue 2
Spring 2023

Teaching How to Select an Optimal Agile, Plan-Driven, or
Hybrid Software Development Approach: Lessons from

Enterprise Software Development Leaders

Gary Spurrier and Heikki Topi

Recommended Citation: Spurrier, G., & Topi, H. (2023). Teaching How to Select
an Optimal Agile, Plan-Driven, or Hybrid Software Development Approach: Lessons
from Enterprise Software Development Leaders. Journal of Information Systems
Education, 34(2), 148-178.

Article Link: https://jise.org/Volume34/n2/JISE2023v34n2pp148-178.html

Received: January 3, 2022
Revised: March 14, 2022
Accepted: July 14, 2022
Published: June 15, 2023

Find archived papers, submission instructions, terms of use, and much more at the JISE website:

https://jise.org

ISSN: 2574-3872 (Online) 1055-3096 (Print)

https://jise.org/Volume34/n2/JISE2023v34n2pp148-178.html
https://jise.org/

Journal of Information Systems Education, 34(2), 148-178, Spring 2023

148

Teaching How to Select an Optimal Agile, Plan-Driven, or
Hybrid Software Development Approach: Lessons from

Enterprise Software Development Leaders

Gary Spurrier
Heikki Topi

Department of Computer Information Systems
Bentley University

Waltham, MA 02452, USA
gary.spurrier@gmail.com, htopi@bentley.edu

ABSTRACT

Over 20 years after introducing and popularizing agile software development methods, those methods have proven effective in
delivering projects that meet agile assumptions. Those assumptions require that projects be small and simple in scope and utilize
small, colocated teams. Given this success, many agile advocates argue that agile should replace plan-driven methods in most or
all project contexts, including those projects that deviate significantly from agile assumptions. However, today’s reality is that a
diversity of agile, plan-driven, and hybrid approaches continue to be widely used, with many individual organizations using
multiple approaches across different projects. Furthermore, while agile advocates argue that the primary barrier to agile adoption
is the inertia of traditional organizational cultures, there are, in fact, many rational motivations for utilizing plan-driven and hybrid
methods based on individual project characteristics. For information systems students, this creates confusion in two ways: 1)
understanding that there is no single best way to develop software in all circumstances but, rather, teams should choose an optimal
project approach based on project characteristics, and 2) unpacking and analyzing the wide range of project characteristics –
including multiple dimensions in functional requirements, non-functional requirements (NFRs), and team characteristics – that
impact that choice. This paper addresses both sources of confusion by utilizing case studies from 22 interviews of enterprise
software development leaders. The paper analyzes each case utilizing a “home grounds” model that graphically portrays key project
characteristics and their impact on the optimal choice of software development project approach.

Keywords: Enterprise systems development, Agile, System development life cycle (SDLC), Case study

1. INTRODUCTION

It is now well established that agile software development
methods can effectively deliver successful project outcomes.
Indeed, these outcomes often can be superior to those from
traditional, plan-driven methods, such as the traditional
Software Development Life Cycle (SDLC) or “waterfall”
(Hastie & Wojewoda, 2015; The Standish Group, 2015). This
is especially true in projects where key agile assumptions are
met – most importantly, software with a small, simple scope
and is supported by small, cohesive, and colocated IT and
business team members. Traditionally, these are often low
criticality projects, executed in highly dynamic environments,
with organizational cultures thriving on rapid, highly
responsive delivery of value (Boehm & Turner, 2004; Williams
& Cockburn, 2003).

As such, it makes sense that, since their introduction in the
1990s, agile software development methods such as eXtreme
Programming (XP) (Beck, 1999, 2000), Scrum (Schwaber,
1995), and many others (Leffingwell, 2007) have come into
widespread use. However, agile’s popularity does not mean it
has been universally adopted. For example, a major, global,
multi-industry survey of agile software development practices

(Digital.ai, 2021) found that 98% of respondents report using
agile practices in at least some of their organizations’ teams.
Importantly, however, that does not mean all teams in these
organizations are agile. Rather, that same survey found that an
approximately 50/50 split exists between organizations in
which less than half of teams are agile versus those in which
more than half are agile. While the exact meaning of agile in
this context may be debated, overall, this points to software
development organizations today continuing to employ a wide
range of approaches, including plan-driven methods and
techniques. Furthermore, the Digital.ai survey is consistent with
other recent research (Nelson & Morris, 2014), indicating that
a significant number of practitioners are still utilizing plan-
driven techniques, such as the waterfall SDLC.

Overall, we see that, even though the Manifesto for Agile
Software Development (2001) was published over 20 years ago,
and key agile methods such as XP and Scrum have been
available even longer than that, many teams are still using plan-
driven methods and hybrid approaches that combine plan-
driven with agile techniques (e.g., Baird & Riggins, 2012; Batra
et al., 2010; Gemino et al., 2021).

Viewing these issues from an information systems
education perspective, we note that agile methods have also

mailto:gary.spurrier@gmail.com
mailto:htopi@bentley.edu

Journal of Information Systems Education, 34(2), 148-178, Spring 2023

149

become highly popular in information systems education, both
as a topic of study and as a foundation for project-based courses
(e.g., Adkins & Tu, 2019; Sharp & Lang, 2018; Sharp et al.,
2020). However, the reality that a wide range of approaches
continue to be used in real-world systems projects today creates
questions and challenges for teachers and students in
information systems courses. For example: Should we teach
both agile and plan-driven approaches? Are there hybrid
approaches available, and if so, what are their characteristics?
If we teach multiple approaches, how do we instruct students
how to choose between these options, including what project
characteristics to focus on and how those characteristics impact
the choice of optimal project approach? Given that systems
students are, after all, budding practitioners, we can see that
these issues also have a direct impact and importance for
experienced systems professionals.

In this light, this article’s primary purpose is to explore the
relationship between project characteristics and the systems
development approach selected for the project, including the
ways to address this question effectively in computing courses.
Our goal is to provide instructors of courses in systems analysis
and design, software project management, software
engineering, and related areas (including project-based
capstone courses) with case descriptions of systems
development approach choices made in real-world projects.
Using a relatively broad, primary data set of practitioner-based
case studies is important for at least two reasons. First, it
provides a level of realism that cannot be obtained in other
studies based on small, student-based projects (e.g., Dhir et al.,
2019). Second, it provides a greater breadth of contexts and,
therefore, explanatory power than studies focusing on a single
project or team context (e.g., Almudarra & Qureshi, 2015).

These case descriptions will be explained via a conceptual
framework utilizing an effective visual representation to
understand salient project dimensions and determine the
optimal software development approach in each case. This
framework is an effective teaching tool and a resource for
organizational practice.

1.1 Explanations for Why Agile Is Not Universally Used:
Stubbornness vs. Intelligence
If agile represents a major step forward over traditional, plan-
driven approaches, why has it not largely displaced those older
methods? There are at least two key possibilities. First, it could
be that traditional, non-agile organizational cultures – including
both information technology departments and the overall
organizations they belong to – are stubbornly and irrationally
slow to relinquish their traditional values and processes. This
explanation is often associated with the viewpoint that agile
approaches are uniformly superior to traditional approaches in
all organizational and project contexts. See, for example,
McKendrick (2020), in which the author argues that efforts to
implement agile approaches widely are being “crushed by
organizational inertia.” This reflects a vocal, uncritical belief in
the near-universal superiority of agile methods – a position that
Boehm and Turner (2004, p. 4) describe as exhibiting “near-
messianic stridency.” (To be fair, Boehm and Turner indicate
this can be true of both agile advocates and resistant
traditionalists.)

In contrast, the second key possibility is that teams that do
not adopt agile but utilize either plan-driven techniques or both
plan-driven and agile techniques in a hybrid fashion do so for

rational, well-justified reasons. Leaders of these teams
recognize that, given the characteristics of their projects, doing
so represents a better process choice leading to better project
outcomes than a “pure” agile approach.

In this viewpoint, there is no “single best way” to develop
software. Rather, agile techniques will work best in specific
circumstances where agile assumptions are met. At a summary
level, these include:

• Ability to engage in effective informal, verbal
communication: This implies a small team that is
colocated, including not only IT professionals but also
business customers who are highly available to work
with IT team members (Boehm & Turner, 2004, pp. 32,
34-35, 37). Additionally, team members should all
exhibit a high level of capability and cohesiveness
(Boehm & Turner, 2004, pp. 46-47).

• Small, simple functionality: This lends itself to the
appropriateness of informal communication and the
consequent lack of comprehensive requirements
documentation (Boehm & Turner, 2004, p. 28).

• Low criticality: This pertains to the costs of errors and
failures – applications that are not mission-critical, do
not manage sensitive customer data, are not subject to
regulation and audit, and do not impact human safety
can more readily implement the informal, low-
documentation techniques of agile (Boehm & Turner,
2004, p. 39).

When these assumptions are violated, agile techniques

become less effective. Seminal authors have noted these and
other issues focused on plan-driven techniques (Cockburn,
2001, p. 187; Jacobson et al., 2016, pp. 120-121) and agile
techniques (Cohn, 2004, p. 188; Leffingwell, 2011, p. 247).
More generally, contingency frameworks have been developed
for assessing project characteristics to strike an optimal balance
between agile and plan-driven approaches (Boehm & Turner,
2004; Spurrier & Topi, 2017).

1.2 Focus on Systems Relevant to MIS Pedagogy
In this paper, we focus on business application software
systems, and in particular enterprise-level software systems.
While this excludes a wide range of other system types (e.g.,
embedded systems, Internet of Things, system software), it does
concentrate on the kinds of systems that are at the heart of
management information systems (MIS) curricula. We term the
corresponding projects that MIS teams undertake to create
those large-scale business application software systems
enterprise software development, or ESD. Enterprise software
refers to systems focused on transaction processing or data
analysis processes in business domains, such as retail order
processing, financial trading, insurance claims processing,
supply chain, customer service, and the like (Fowler, 2003). As
such, enterprise software tends to exhibit the following
characteristics:

• Strategic and mission-critical: Software key to
strategic differentiation and the ability to operate and
compete.

• Complex, organization-specific functionality:
Typically, not attainable solely from a single
commercial off-the-shelf (COTS) product. If COTS
software plays a major role in an enterprise software
solution, it will typically be supplemented with custom

Journal of Information Systems Education, 34(2), 148-178, Spring 2023

150

integrations (“glue code”) with internally developed
applications or extensions, such as custom user
interfaces.

• Large amounts of diverse, persistent data: Generated
by transaction processing and/or subsequently analyzed
for reporting. Large numbers of entity types create a
need for many corresponding user interface screens.

• Serving many users: Across the organization, often in
multiple roles and units.

• High risk: From handling customer data, facing the
public internet, being subject to audit, or, in some cases,
supporting human safety.

• Needing robust architecture: To support industrial-
strength reliability, scalability, extensibility, and
criticality.

• High budget, large IT staff, and high visibility:
Arising from all the factors above.

These are broad descriptors, but they do narrow our focus

to the kinds of transactional and analytics systems most
frequently taught in MIS courses. Furthermore, note that we do
not specify ESD or large-scale agile solely based on the number
of developers or number of teams (as, for example, Dingsøyr &
Moe, 2014, and Dikert et al., 2016, do). Also, we are not
focused on the exact structure of teams nor on the path to
implementing those structures (as, for example, in Gerster et al.,
2020). Finally, to be clear, in this context, “enterprise software”
is distinct from COTS enterprise resource planning (ERP),
customer relationship management (CRM), or similar third-
party systems. While our definition may include project
contexts that are primarily built using COTS products, it
generally focuses on contexts in which another team outside of
COTS vendors needs to engage in significant, additional
custom software construction, integration, or configuration
unique to that organizational context. Alternatively, it could
refer to the custom development of the COTS product itself, by
the software vendor’s own IT team.

1.3 Fundamental Project Approaches and Project
Characteristics
Agile pundits and authors have acknowledged that challenges
exist when scaling agile. But they have strongly asserted that,
by implementing certain adaptations that retain both the core
character and benefits of agile, it is possible and, in fact,
desirable to scale up agile approaches for large-scale, complex
projects – that is, in projects we define as ESD. These assertions
are evidenced by the publication of a significant number of
“scaled agile” techniques and approaches, including Agile
Project Management (APM) (Highsmith, 2010), the Scaled
Agile Framework (SAFe) (Leffingwell et al., 2018), Large
Scale Scrum (LeSS) (Larman & Vodde, 2017), Disciplined
Agile Delivery (DAD) (Ambler & Lines, 2012), and others.
However, while these frameworks indicate support for scaling
agile, the need for them to supplement base approaches such as
Scrum implicitly also acknowledges the challenges of doing so.
This need raises key questions. First, in what specific ESD
circumstances should base agile techniques be augmented with
scaled agile techniques or even replaced with plan-driven or
hybrid techniques? Second, in response to those circumstances,
how should agile techniques be modified in terms of
fundamental project approach dimensions, including functional

requirements, non-functional requirements, implementation
processes, and team structure?

This paper addresses these questions by leveraging primary
data from 22 case studies. Via this data, we make sense of
practitioner systems project approach choices and their
motivations for those choices. Additionally, we explain those
choices in terms of the fundamental project dimensions just
mentioned rather than arguing the relative merits of any of the
scaled agile frameworks that we have noted or, for that matter,
other non-agile frameworks. In doing so, we provide a
fundamental understanding of system project approach
dimensions, choices, and motivations. One of our fundamental
goals is to offer information systems educators teaching courses
related to systems development a rich set of material that they
can use to illustrate the importance of and the practical
challenges related to these decisions.

To lay the foundation for these arguments, we begin with a
conceptual discussion of the fundamental dimensions of
software development projects:

• Project Approaches: We span the two most general
characteristics of traditional plan-driven versus new
agile systems project approaches: requirements and
construction. This discussion includes how those two
fundamentally different approaches can be melded into
a hybrid approach. It also focuses on fundamental
project approach characteristics and thereby avoids
becoming mired in the details and terminology of any
specific framework.

• Project Characteristics: With project approaches in
hand, we then turn to key project characteristics that
impact the choice of project approach in any particular
project. Note that we will map those characteristics to
three higher level characteristics categories: functional
requirements, non-functional requirements, and team
characteristics. This schema will provide conceptual
clarity for understanding how each individual
characteristic impacts the choice of project approach.

1.3.1 Fundamental Project Approaches and Project
Characteristics. By project approach, we define the essential
characteristics of a systems project, and, in particular, whether
it is an agile approach, a plan-driven approach, or a hybrid
approach that combines aspects of the other two. Rather than
focus on particular methods and frameworks (e.g., Scrum,
eXtreme Programming, traditional SDLC, SAFe, APM), we
define project approach in terms of two key dimensions:

• Requirements:
o When are software requirements captured during

the project? In particular, are they captured before
construction begins or while construction is
happening?

o How much formal requirements documentation
will be created during the project?

• Construction:
o How do we structure software construction – in a

single long phase or a series of iterative cycles
(called “sprints” in the Scrum methodology)?

o When do we review working software with
business customers – only at the end of the project
or periodically during construction?

Journal of Information Systems Education, 34(2), 148-178, Spring 2023

151

By project characteristics, we mean to identify, organize,
and interrelate key factors that influence the optimal choice on
the spectrum between agile and plan-driven approaches, where
the points between agile and plan-driven represent a variety of
hybrid approaches. As explained below, given the complexity
of software projects, numerous factors impact this choice. We
organize them into three main categories:

• Functional Requirements: Define the behavioral
features of the system – what the system does and how
it does it to support the needs of a specific type of user
in accomplishing a business goal or obtaining business
value. Specific characteristics of functional
requirements may determine the suitability of an
informal, agile approach to the requirements versus the
need for formal, up-front functional requirements in the
form of Big Requirements Up Front (BRUF).

• Non-Functional Requirements: Pertain to the
qualities of the system that are not specific to a business
or industry, including familiar “FURPS ilities” such as
usability, reliability, performance, and supportability
(Grady, 1992). As we will demonstrate, these
requirements drive the need for intentional architecture
in the form of Big Design Up Front (BDUF).

• Team Characteristics: Include the size, skill sets, and
other characteristics of both the IT team and the
customer team. In general, team characteristics should
fit with both functional and non-functional
requirements. For example, a large set of functional
requirements would likely drive the need for a large IT
team, while complex non-functional requirements
would likely drive the need for a diverse set of IT skill
sets (such as architects and security specialists).
Furthermore, some aspects of team characteristics may
independently influence requirements needs; for
example, an IT team that includes offshore team
members would likely need more BRUF, all other
things being equal than a colocated IT team.

1.4 Review of Prior Relevant Research
To position this paper in the context of information systems (IS)
research on systems analysis and design (SA&D) education
and, specifically, research on pedagogical questions related to
the selection of the SA&D approach between agile, hybrid, and
plan-driven, we reviewed relevant IS education research
published during the last 20 years. Our core focus was on
journal articles and conference papers published in IS education
journals (Journal of Information Systems Education,
Information Systems Education Journal, Communications of
the Association for Information Systems) and conferences
(EDSIGCON, AIS SIGED, and AMCIS and ICIS Education
tracks), but we also included relevant papers published in
general peer-reviewed IS outlets. The purpose of this section is
not to provide a comprehensive, systematic literature review of
SA&D education, or a specific area within it, in the way Feng
and Salmela (2020), Sharp et al. (2020), Sharp and Lang (2021),
and Niederman et al. (2018) have recently done. Instead, our
purpose here is to demonstrate the connections between this
paper and prior IS education literature. We are indebted to the
authors of those literature reviews for their excellent work in
identifying potentially relevant articles.

This paper addresses questions regarding agile software
development. Therefore, we want to clarify its positioning

using the framework proposed by Sharp and Lang (2018) – also
featured in Sharp et al. (2020) – in which the authors specify
the distinction between agile pedagogy and agile content. This
paper focuses on the topical content of a typical SA&D course
(project approach selection on the agile-hybrid-plan-driven
continuum) instead of following a specific set of pedagogical
principles (such as agile pedagogy).

In the context of the IS 2020 competency model (Leidig &
Salmela, 2021), this paper addresses SA&D competency
DEVP.SADN.3 “Identify SDLC Models.” We recognize the
importance of this competency and advocate for its inclusion in
the coverage of IS textbooks, which was found lacking in Sharp
and Lang (2021).

The primary question in this paper is how to select the
optimal approach to executing a specific SA&D project. Prior
IS education research has recognized the importance of this
question, but not at the same level of breadth and focus.
McAvoy and Sammon (2005, p. 409) want to “highlight the
importance of certain adoption factors to the adoption of an
agile method … [and] … to determine the viability of an agile
method for a specific software project.” Based on prior
research, the authors identify 11 critical adoption factors
categorized into four groups (Project, Team, Customer, and
Organization). McAvoy and Sammon focus entirely on
methods within the agile approach and do not specify the
alternatives. Harb et al. (2015) acknowledge the value of project
approach selection but focus only on agile methods without
addressing whether agile is the right choice in the first place.
Landry and McDaniel (2016) propose a way to integrate the
coverage of agile concepts within a traditional project
management course. They acknowledge at least implicitly that
the agile approach is not always right for a project by
introducing a case discussion question, “Is agile right for my
project?” (p. 28) and by outlining seven conditions under which
“agile is right for a project” (p. 29). They do not, however,
discuss the non-agile options. These three papers demonstrate
that the project approach or methodology selection is an
important topic, even though they all focus on selecting one of
the agile methods.

Prior IS education research includes a small number of
studies that recognize the important role of the hybrid approach
on the continuum between agile and plan-driven approaches.
Baird and Riggins (2012) directly recognize the existence of
agile, traditional, and hybrid IT project management
methodologies in a paper that focuses on using a hybrid
methodology in an undergraduate capstone project
management course. They emphasize the importance of
teaching the hybrid approach because of its popularity among
industry practitioners. Rush and Connolly (2020) propose a
pedagogical approach for teaching IT project management that
is based on agile Scrum. They acknowledge that in
organizational practice, the choice is not (only) between agile
and plan-driven; instead, “companies can and do manage
projects in a hybrid manner, mixing these methods, depending
on the size, type, and needs of the project” (p. 198, quoting
widely known Forrester report by West et al., 2011). Several
general IS papers demonstrate the importance of the hybrid
approach, including Vinekar et al. (2006), Fitzgerald et al.
(2006), Batra et al. (2010), and Baskerville et al. (2011). Still,
no scholarly work known to us addresses the focus areas of this
paper, that is, the specific questions of how to determine the

Journal of Information Systems Education, 34(2), 148-178, Spring 2023

152

optimal project approach in the hybrid space between plan-
driven and agile and how to cover this issue in an SA&D course.

In sum, prior research on SA&D education has 1) identified
the role of the hybrid approach to systems development that
includes elements of both agile and plan-driven approaches and
2) recognized that the right selection of a specific development
methodology or approach is important for project success. No
prior study has, however, provided a detailed model for
selecting an optimal approach on the agile-hybrid-plan-driven
continuum. In this paper, we propose such a model and provide
pedagogical guidance for helping students understand and
apply the model.

We have now set the stage for the remainder of the paper.
In Section 2, we describe our model of systems projects and key
decisions that the leadership of each project (and/or
organization) needs to make regarding the software
development approach chosen, whether that choice is between
agile, plan-driven, or hybrid. The model consists of 14 project
characteristics organized into these three main categories; it
substantially modifies and expands an agile versus plan-driven
“home grounds” model from Boehm and Turner (2004).
Section 2 also serves as a tutorial for instructors interested in
incorporating the hybrid approach, the home grounds model,
and the project characteristics impacting approach selection
into their courses. Section 3 describes the general
characteristics of 22 in-depth interviews, which, in turn, provide
the case material in Section 4 for a much more detailed
illustration of the home grounds model, including how each of
the 14 characteristics affects the development approach choice.
For instructors of IS courses, Sections 3 and 4 provide a rich
selection of descriptions of organizational practices related to
systems development approach selection. Section 5 notes
exceptions to the extended home grounds model. Section 6
discusses the use and selection of project approaches, the home
grounds model, and the radar chart method for both
practitioners and information systems courses. Section 7 ends
the paper with a summary.

2. THE FRAMEWORK

2.1 The Essence of Agile, Plan-Driven, and Hybrid Software
Development
Before providing illustrative examples of the factors affecting
software development approach choice in Section 4, we must
provide an organized framework to describe some of our key
assumptions regarding software development projects. For this
purpose, we utilize a two-part framework developed previously
(Spurrier & Topi, 2017).

Per the discussion in Section 1, the first part of this
framework argues that the essence of agile and plan-driven
approaches can be expressed in a simple matrix utilizing only
two dimensions:

• Requirements: When and how features and designs are
determined.

• Construction: When and how software is coded, tested,
and deployed.

As portrayed in Figure 1 (first published in Spurrier & Topi,

2021), for plan-driven approaches such as waterfall, the choices
for requirements and construction are Big Requirements Up
Front (BRUF) coupled with single-phase, noniterative
construction. In contrast, for agile, the choices are emergent

requirements, meaning documenting only high-level stories up
front, with detailed requirements emerging during iterative
construction (i.e., sprints).

Figure 1 allows us to pay less attention to the details of
specific methodologies that are not essential for understanding
the high-level differences (such as eXtreme Programming’s use
of pair programming).

It is essential that this framework posit the possibility of a
third, hybrid software development approach combining a high
degree of plan-driven BRUF with agile, iterative construction.
Even though it is not necessarily identified as such, many
projects use this hybrid approach, which combines the
advantages of up-front planning and requirements specification
with iterative construction. In hybrid projects, only a portion of
the detailed requirements is defined up front, with the rest
emerging during implementation within minimum and
maximum scope “guardrails” defined in the BRUF.
Furthermore, iterative construction allows for frequent
customer contributions, evaluation, and feedback, including
revisions to requirements and priorities based on customer
reviews at the end of each iteration.

This suggests a balance of BRUF and emergent
requirements that could vary based on project characteristics.
Instead of considering agile as “evolving and emerging” and
plan-driven as “staid and traditional” (Cram & Brohman, 2013),
this model suggests that the optimal choice of project approach
is often hybrid, varying significantly between agile and plan-
driven, depending on a project’s characteristics. We believe that
articulating a spectrum of hybrid approaches between the agile
and plan-driven approaches will be important for all SA&D and
other systems development course students to learn. Section 2
serves as a tutorial in this important topic area.

2.2 A Home Grounds Model for Understanding Practitioner
Motivations
Additionally, to understand the motivations for selecting a
software development approach, we built on a contingency
“home grounds” model first created by Barry Boehm and
Richard Turner (Boehm & Turner, 2004), describing the fit of
plan-driven versus agile approaches based on organizational
and project characteristics. Our extended model is shown in
Table 1 (first published in Spurrier & Topi, 2021), showing the
14 project characteristics mentioned previously. Note that, as
the answer to “The degree to which…” for any given project
characteristic increases, plan-driven approaches become more
appropriate (plan-driven home ground). On the other hand, as
any given project characteristic decreases, agile approaches
become more appropriate (agile home ground). As described
above, enterprise software development (ESD) frequently
aligns with the plan-driven home ground.

Journal of Information Systems Education, 34(2), 148-178, Spring 2023

153

2.3 The Primacy of Iterative Software Construction
Note that we expect that doing software construction iteratively
will nearly always be an inherently better approach than
traditional plan-driven, noniterative construction. This is
because iterative construction enables frequent customer
feedback and requirements course corrections during
construction (Leffingwell, 2007). We therefore expect that, as
project characteristics move toward ESD, organizations today
that are engaged in coding new features would move to the
hybrid approach, rather than a “pure” plan-driven approach
(e.g., traditional SDLC or “waterfall”). Thus, for software
construction, today the real choice is between agile and hybrid
approaches, rather than agile versus “pure” plan-driven. This
distinction is reflected in the column headings of Table 2 –
“Agile Home Ground” versus “Hybrid Home Ground” – which
portrays prototypical home grounds characteristics for each
approach. (Table 2 was first published in Spurrier & Topi,
2021.)

In contrast, we expect that some organizations solely
implementing a commercial off-the-shelf (COTS) software
application (without significant new software coding) would
follow a “pure” plan-driven process, given that these packages
are often at least expected to be configured using a well-
understood, repeatable series of configuration steps (Rubin,
2013, p. 8). However, based on our definition of ESD earlier,
which specifies at least some new software development, such
instances are outside the scope of the extended home grounds
model. We note this as an exception to the model near the end
of the paper in Section 5.6.

We next turn to the issue of making sense of the home
grounds model in relation to scaled agile frameworks – are these
conceptual frameworks fundamentally at odds with each other,
or is there an underlying commonality?

2.4 The Home Grounds Model in Relation to Scaled Agile
Frameworks
How can we relate the home grounds model to the agile versus
scaled agile frameworks introduced in Section 1.3? Note that
many of the home grounds model dimensions and their impacts

on projects would be familiar to students of the scaled agile
frameworks. A good example of this is the Agile Project
Management (APM) framework from Highsmith (2010), who
is a leading agile author and a signer of the Agile Manifesto
(2001). A careful reading of the APM framework, and in
particular of the Agile Enterprise Framework included in the
second edition (2010), reveals a concern with the challenges
and impacts on the appropriateness of agile techniques that arise
with respect to the following functional requirements
characteristics:

• High numbers of features (p. 271)
• High levels of feature complexity (p. 276)
• High levels of feature interdependence (pp. 139, 276,

282)
• Low levels of feature uncertainty (pp. 129, 210, 276)
• Low levels of feature requirements change (pp. 110,

139)

Similar challenges and impacts can be found with respect

to several of the non-functional characteristics (see pp. 87, 271,
286) and team characteristics (see pp. 142, 276, 282, 286, 287)
listed previously.

Based on these issues, Highsmith acknowledges that a
“multiplicity” of software development approaches may be
warranted and that, furthermore, projects need to employ
“situationally specific strategies, processes, and practices” (p.
77, italics in the original) that impact “organization,
architecture, documentation, process” (p. 271). This causes a
need to strike a balance between agile and plan-driven
characteristics based on each project’s characteristics (pp. 70,
112).

Figure 1. Agile, Hybrid, and Plan-Driven Approaches: Essential Characteristics (Spurrier & Topi, 2021;

Copyright © 2021 Prospect Press)

Dimension Plan-Driven Agile

Requirements

Big Requirements and Designs
Up-Front (BRUF and BDUF)
• Up-front fixed scope
• Comprehensive,

detailed
requirements
documents

Emergent Requirements
• Up-front flexible scope in form

of prioritized user stories
• Detailed requirements created

(mostly informally) during
construction sprints

Construction

Non-Iterative
• Single, long phase of

software construction
• Software demonstration

and user testing only at end

Iterative (Sprints)
• One- to four-week sprints
• Software demonstration at end

of each sprint
• Revise each sprint based on

customer feedback and updated
requirements

Journal of Information Systems Education, 34(2), 148-178, Spring 2023

154

This leads Highsmith to describe a project that for good
reasons utilized non-agile practices (p. 272), including
“heavyweight” processes and documentation, albeit delivered
iteratively – in essence, it was hybrid, although Highsmith does
not use that word. However, Highsmith argues that the project
was still agile because the team utilized an agile “mindset” in
changing baseline agile practices to those “heavyweight”
practices (p. 272). For students of information systems,
describing an objectively non-agile project as “agile” because
of the subjective mindsets of its team members is likely to be
merely confusing: a distinction without a meaningful
difference. It would be better to teach those students to pay
attention to how the project is actually planned and executed –

in this case, using a hybrid approach, as described in Figure 1
in Section 2.1.

In reviewing Highsmith’s work in relation to this paper, we
note the following:

• He acknowledges the need to balance a systems
project’s approach based on what we call a project’s
home ground characteristics.

• However, he does not provide a systematic,
comprehensive model that students or professionals can
employ to understand each of those project
characteristics and their particular impacts on optimal
project approach. Referring to the page numbers cited
in this section, one can see that the arguments are
scattered throughout his book.

Project Characteristic Project Characteristic Description
“The degree to which…”

FUNCTIONAL REQUIREMENTS CHARACTERISTICS
Number • Project includes many new features

• Features include multiple functional areas
Complexity • Individual features are complicated

• Requirements vary across different users, departments, or offices
• Goals require multiple projects and/or multiple systems

Interdependence • Existing application is difficult to update because of high coupling
• New features build on each other; must be built in a specific order

Clarity • Current state of business and software is clearly understood
• Future state can be clearly understood up front

Stability • Requirements change slowly over time
NON-FUNCTIONAL REQUIREMENTS CHARACTERISTICS
Performance • Software must support large numbers/amounts of users/transactions/data

• Planned need for high performance contrasts with current low-performance needs
Supportability • Software needs to easily support future extensions to functionality

• Software needs to be easily maintainable
Criticality • Software is mission critical

• Software security needs to protect sensitive data
• Software impacts human safety
• Software is subject to legal audit or requires formal requirements

Integration • Software must integrate or interface with many other systems
Technology • Project needs to use or integrate new or unproven technologies

• Technology is obsolete and needs to be updated or replaced
TEAM CHARACTERISTICS
IT Team Size • Many IT team members

• Multiple IT teams to coordinate
IT Team Locations • Multiple locations

• Multiple time zones
• Multiple native languages and cultures
• Multiple organizations (e.g., internal team working with a vendor)

IT Team Skills • Many skill sets with high level of team member specialization
• Team needs training on new or existing technologies
• Team needs training on software development process
• Team needs better cohesiveness and communication

Customer Team • Many Subject Matter Experts, sponsors, other stakeholders
• Multiple areas of expertise
• Multiple locations, time zones, languages, cultures
• Customers face diverse laws, regulations, and market practices
• Customers value formal project planning and management

Table 1. Extended Home Grounds Model Showing Dimensions for Selecting Development Approach (Spurrier & Topi,
2021; Copyright © 2021 Prospect Press)

Journal of Information Systems Education, 34(2), 148-178, Spring 2023

155

• Nor does he provide clarity in defining agile versus non-
agile techniques and approaches applying to how a
project is objectively planned and executed.

We offer this critique not to pillory Highsmith (or any other

author advocating scaled agile techniques). Rather, we offer
him as a prominent and, in fact, a typical example of agile
literature that acknowledges that agile techniques are often
inappropriate but fails to systematically address all the reasons

why agile techniques are not appropriate. Such literature
thereby attempts to obscure the reality that in such
circumstances, the optimal process is not agile but, rather, a
complex hybrid of agile and plan-driven techniques. It was, in
fact, this gap in the literature that motivated us to engage in this
study.

On the other hand, we acknowledge that there is some
validity in Highsmith’s point that an agile mindset can, to a
limited extent, help teams adapt to objective project

Project Characteristic Agile Home Ground Hybrid Home Ground
FUNCTIONAL REQUIREMENTS CHARACTERISTICS
Number Small number of new features

Focused on one function
Small budget

Many new features
Focused on multiple functions
Large budget

Complexity Simple features
Single project
Simple data schema
Single version of requirements

Complex features
Multiple interacting projects
Complex data schema
Many requirements variations

Interdependence Brand-new software application
Enhancements to a modern, well-
designed existing application
User stories are independent

Enhancements to an existing, “legacy”
application that is poorly designed
User stories must be built in a specific,
logical order

Clarity Start-up business
New product, service, or function
Responding to confusing, turbulent
environment

Current business and software well
understood (or can be)
New requirements well understood (or can
be)

Stability Requirements changing rapidly Requirements changing slowly
NON-FUNCTIONAL REQUIREMENTS CHARACTERISTICS
Performance Small number of users

Low transaction/data volume
Many users
High transaction/data volume

Supportability Tactical application
Proof of Concept/“throwaway code”

Strategic application
High future investment

Criticality Nonessential application
Public data only
Internal access only
No safety risks
No regulations or auditability

Mission-critical application
Protect sensitive/confidential data
Facing public internet
Impacts human safety
Subject to regulation or audit

Integration Software operates in isolation from
other systems

Software integrates or interfaces with
many other systems
New approaches (e.g., web services)

Technology Continuing to use existing, proven
technologies

New tech to learn, prove, or update
Integrate with existing tech stack

TEAM CHARACTERISTICS
IT Team Size Under 10 team members

Single team
Many team members
Organized into multiple teams

IT Team Locations Single location (single room)
Common language and culture
Team all from same organization

Multiple locations and time zones
Multiple languages and cultures
Multiple organizations

IT Team Skills Strong technology skills
Strong, existing project approach
Long-standing, cohesive team

New, unfamiliar technologies
Adopting new project approach
Multiple new team members

Customer Team Single Product Owner or SME
Single department and function
Customers in single location
Single version of requirements

Multiple Product Owners or SMEs
Multiple departments or functions
Multiple locations, time zones, languages,
and cultures
Requirements vary significantly

Table 2. Home Grounds Model of Project Characteristics for Agile and Hybrid Project Approaches (Spurrier
& Topi, 2021; Copyright © 2021 Prospect Press)

Journal of Information Systems Education, 34(2), 148-178, Spring 2023

156

characteristics that make agile less appropriate. Such team
adaptations may ameliorate some of the impacts of those project
characteristics. For example, as we will explain, a team
operating in multiple physical locations will face more
challenges to operating in a highly agile manner than a
colocated team. However, a team that has operated in multiple
locations for an extended period of time may, to an extent, be
able to adapt to those circumstances, enabling them to operate
in a relatively more agile manner than a team that has not
previously had to operate in those circumstances. We will
return to this point in Section 6, in which we describe
approaches to utilizing our models for practitioners and
students.

Having established that the scaled agile frameworks, in
fact, advocate for hybrid approaches – albeit obliquely – we
now turn to address an issue that they do not consider: how to
systematically make sense of the many project characteristics
that impact the optimal choice of project approach.

2.5 Visualizing Project Characteristics via a Radar Chart
The home grounds model explained earlier is complex,
involving 14 separate dimensions. This reflects the reality that
software projects are extraordinarily complex activities.
Furthermore, it reflects that software projects are also difficult
to understand in a summary fashion because of that complexity.
Boehm and Turner (2004, pp. 54-56) introduced the use of radar
charts to portray various project characteristics in a manner that
could be comprehended at a glance.

In Boehm and Turner’s approach, a project that graphs near
the outer edge of the radar chart is consistent with the plan-
driven home ground, while a project that graphs near the center
of the radar chart is consistent with the agile home ground.

We utilize this same approach, albeit with some key
changes that we initially outlined in Section 1:

• Number of major categories and more dimensions:
Boehm and Turner’s model utilizes five dimensions –
Size, Dynamism, Personnel, Criticality, and Culture. As
described earlier, our model, in contrast, expands these
dimensions to 14, organized into three categories. Note
that we merely introduce these categories and
dimensions here but wait until our case studies to fully
explain them and their impacts on project approach:
o Functional Requirements: Driving the need for

detailed functional requirements documentation,
also known as “Big Requirements Up Front,” or
BRUF. Note that functional requirements are the
primary responsibility of the business analyst
(BA). Within this category are five dimensions –
Number, Complexity, Interdependence, Clarity,
and Stability. Each of these drives the need for
BRUF in a unique way.

o Non-Functional Requirements: Driving the need
for detailed non-functional requirements planning,
also known as “Big Design Up Front,” or BDUF.
Note that non-functional requirements tend to
require support from specialists in areas such as
architecture, security, and infrastructure. Within
this category are five dimensions – Performance,
Supportability, Criticality, Integration, and
Technology.

• Team Characteristics: These generally should be
driven by and fit with the functional and non-functional

requirements categories, but which also may, to an
extent, drive the other two. Within this category are four
dimensions – IT Team Size, IT Team Locations, and IT
Team Skills, and Customer Team.

Figure 2 illustrates the model as a radar chart. The plotted

line tracks near the outer edge for most dimensions, indicating
a project that generally aligns with the plan-driven home ground
(or hybrid approach, in the case of a software construction
project). A line plotting near the center of the chart would be
consistent with the agile home ground.

For each case study we discuss, we help explain the choice
of project approach by providing a project characteristics radar
chart to illuminate the case study text. We propose the radar
chart approach as an effective pedagogical tool that enables
students to understand better the joint impact of the complex set
of factors affecting the fit between the systems development
approach and project characteristics. In Section 4, we use the
radar chart as a tool for illustrating our case studies. In that
context, we also will discuss at a more detailed level how the
radar chart can be used to determine the best systems
development approach for a project. Let us first, however,
describe the sources of the case study data and the process
through which it was collected.

3. CASE STUDY DATA

The following case studies are based on one-hour,
semistructured interviews with 22 software professionals, each
of whom had leadership responsibility for enterprise software
development projects. The sample included representatives
from internal software development, COTS product
development, and custom consulting development. We
recruited them from our personal contacts, including industry
colleagues, who tended to be older and more experienced, as
well as former students, who tended to be younger. While this
was not a random sample, it did tap into a broad range of
experiences, including those who grew up in a mainly plan-
driven environment and those who grew up in an environment
in which agile was especially prominent.

Figure 3 presents the industry background of these
professionals. Healthcare and insurance industries are
disproportionately represented; this reflects the influence of our
own professional backgrounds.

Figure 4 presents the perspective of each interviewee:
• Internal IT Group: Indicates interviewee was

operating inside an organization directly supporting that
organization’s enterprise software application needs. To
the extent COTS software was part of the application
mix, the interviewee was a consumer of that COTS
software, not a vendor.

• Vendor-Custom Development: Indicates interviewee
was operating as a consultant or within a firm offering
custom software development to other organizations.
Note that some of these include COTS products or
components, but only in a highly unique, single-client
manner emphasizing a high degree of custom software
development.

Journal of Information Systems Education, 34(2), 148-178, Spring 2023

157

Figure 2. Sample Project Characteristics Radar
Chart

Figure 3. Industry Background of Interviewees

Figure 4. Perspective of Interviewees: Internal IT,
Vendor-Custom, or Vendor-Product

• Vendor-COTS Product: This indicates the

interviewee was operating as a member of a vendor
organization focused on creating and deploying highly
configurable software products for multiple customers.
As such, the software development considered was for
the COTS product itself.

Table 3 briefly summarizes the case examples covered in

Section 4 and their alignment with the corresponding radar
chart figures.

Both authors participated in each interview. The interviews
were semistructured, and each began with a review of the
software development framework described earlier. General
questions included the following:

• Does the software development framework make sense
to you?

• What kind of enterprise software are you focused on?
• What is your software development approach, including

your approach to requirements and to development?
• Do you have a label for your approach?
• What determines your selection of a given software

development approach?

Our original plan was to focus each interview on a specific

software project. However, it became clear at the outset that
several respondents naturally wanted to provide insights from
multiple software projects. It was especially the case that older,
more experienced respondents could provide insights across
many projects and software development eras, so we allowed
each respondent to do so based on their breadth of experience.

All interviews were conducted via videoconferencing,
although some respondents joined using only audio. Both
authors took written notes, and all interviews were audio-
recorded and transcribed for analysis. Each author then coded
the interview data independently using categories based on the
framework in Table 2. For example, Scope Size, Scope Clarity,
and Software Development Interdependence categories were
included as likely determinants of the software approach
utilized. Each of the authors then extended those categories
based on detailed transcripts reviews. For example,
Architecture and Application Type emerged as an important
determinant of the approach employed. Given this analytical
method, the findings were grounded in preexisting theory and
emergent concepts from the data. Finally, the authors compared
their independent findings, with one of them combining the
findings and the other finalizing them.

This sets the stage for the next section, in which we examine
each of the case studies and utilize radar charts to enable
understanding the motivations of each practitioner in adopting
a particular software development project approach or, in some
cases, multiple approaches.

4. ILLUSTRATIVE CASE STUDIES

This section discusses case examples, using them as examples
illustrating the impacts of various project characteristics on the
project approach. We start with functional requirements – the
traditional province of the business analyst. We then proceed to
non-functional requirements – typically the province of
technical specialists, such as architects, security specialists, and
infrastructure specialists. We finish with team characteristics,
including considerations of fit with functional and non-
functional requirements and the team’s independent impact on
the need for planning. The purpose of these case examples is
twofold. First, they demonstrate that even a small sample of 22
interviews includes examples of each factor affecting project
approach choice, lending support for and illustrating the
conceptual model. Second, as discussed earlier, they provide
educators teaching SA&D courses with material for illustrating
these factors and their impact on systems development
approach selection with practical cases.

Journal of Information Systems Education, 34(2), 148-178, Spring 2023

158

4.1 Functional Requirements and Big Requirements Up
Front
When creating functional requirements, BAs, product owners,
and other requirements-focused team members must choose
between the plan-driven technique of creating comprehensive,
formal documentation up front versus the agile technique of
deferring those requirements so that they can emerge (Agile
Manifesto, 2001), likely in an informal manner, just before the
feature is created. The former is commonly termed “Big
Requirements Up Front (BRUF)” (Ambler, 2014) – the term we
use in this paper – or “Big Up Front Design (BUFD)”
(Leffingwell, 2007, p. 30). The latter is called “emergent”
requirements (Boehm & Turner, 2004, p. 29).

Importantly, as noted earlier, the choice is not binary –
teams can explicitly choose to do a portion of the requirements
upfront while deferring the remainder to iterative construction
cycles. The following examples illustrate how real practitioners
assess project characteristics in striking that balance.

4.1.1 Number and Complexity: Impacts of Largeness. The
first two factors – Number and Complexity – and their impacts
on projects are easy to understand. Still, they set the stage for
the more complex impacts of Interdependence, Clarity, and
Stability, considered below.

Together, Number and Complexity account for the
“largeness” of a project – the number of features to build and
how difficult each feature is to build. Not surprisingly, as either
of these factors increases, it becomes more and more difficult
to handle requirements in an informal, agile way. Many features
need to be formally tracked, and individual complex features
need to be documented in detail.

An excellent example is a health care organization with
multiple hospitals and physician clinics. It employs over 4,000
employees in various functions – doctors, nurses,
administrative staff, etc. Furthermore, it serves tens of
thousands of patients, many of whom access the organization’s
large portfolio of integrated information systems, including a
COTS system for electronic health records interacting with
numerous internally developed applications. The radar chart for

Company Type Key Point Demonstrated by the Example Figure
Health care provider Large portfolio of integrated information systems led to high

Number and high Complexity
Figure 5

IT consulting; single IT team per
project (max 12 weeks)

Intentional choice of small Team Size, small Number, and low
Complexity

Figure 6

IT consulting; single IT team per
project (max 12 weeks)

Impact of back-end components leading to high Interdependence
and high Criticality

Figure 6

Manufacturing; complex
modifications to trucks

Initially low Number, Complexity, and Interdependence in
greenfield projects, but these three characteristics will increase
when the systems mature and their value is established

Figure 8

Insurance broker Two project types:
“Enhance the Business”: High Stability and high Clarity;
“Research & Development”: Reduced Stability and Clarity

Figure 10

Health care software Less focus on requirements because of lower Stability than
anticipated

Figure 11

Large-scale survey solution Lower planning need despite very high Performance
requirements because of use of existing third-party components

Figure 12

Insurance company Rewrite of a legacy claims processing system with high
Criticality, Performance, and Supportability requirements – use
of agile led to “disaster” in terms of Supportability

Figure 13

Expert architect with experience over
number of solution contexts

Moving toward the use of a microservices architecture to enable
high Supportability

Figure 14

Online retailer Rare example of a system with low Criticality: Sending order
status messages to customers

Figure 15

Manufacturing company Systems integration project with high Integration, Technology,
and IT Team Skills requirements

Figure 16

Major financial services company High Technology coordination needs across multiple divisions;
overall, high values for all characteristics

Figure 17

Multinational insurance company Different Customer Team characteristics in the United States and
Europe, leading to different project approaches

Figure 18

Big data analytics COTS product
vendor

Very high feature requests lead to a need to utilize a formal
requirements management tool; different client requirements
regarding speed of changes and documentation requirements

Figure 19

Technology consulting firm building
customer websites

Impact of Team Size on development approach selection Figure 20

High-tech manufacturer Back-office administrative systems developed by teams in the
United States and India; impact of IT Team Locations and IT
Team Skills on approach selection

Figure 21

Table 3. Summary of Cases Featured in Section 4

Journal of Information Systems Education, 34(2), 148-178, Spring 2023

159

most projects in this organization is portrayed in Figure 5, in
which the blue line represents the profile of the project
characteristics, and the red stars highlight the two factors of
interest, Number, and Complexity. Not surprisingly, these
projects plot near the outer edge of the radar chart. In particular,
for this example, the IT group receives 600 to 700 requests for
coding changes each month. Furthermore, many of those
requests are individually complex. This necessitates what their
Director of Applications called a “highly defined process” for
handling requirements, including highly formal functional
requirements and “documented, iterative builds.”

At the other end of this spectrum is an example from an IT
consulting group “culturally committed” to agile principles and
practices, including eXtreme Programming (XP). In addition to
providing custom software development services to its clients,
this group also educates IT team members from those clients in
agile development practices by having those clients temporarily
join their team as pair programmers. From the perspective of
illustrating the impacts of Size and Complexity, the interesting
thing about this example is that all of this team’s projects are
kept small – none targeting more scope than a single, small IT
team can accomplish in 12 weeks. This organization will not
accept projects larger than this because they become difficult to
execute in an agile manner. In Figure 6, the blue line indicates
the project characteristics of a typical web development project
for this group. The red stars highlight the small Number and
Complexity of features necessary to keep these projects small.
(Note: We will examine the red line and yellow stars in the next
section on Interdependence.) A project significantly larger than
described would plot progressively farther out on the Number
and Complexity, consequently requiring more BRUF.

4.1.2 Interdependence: When One Thing Depends on
Another. Agile approaches assume that features – typically
expressed as user stories – can be written in such a way that
they are independent. This means they can be developed in any
order and will not impact other stories or existing functionality
(Wake, 2003).

This is illustrated in Figure 7 (first published in Spurrier &
Topi, 2021), which shows that, when features are independent,
it is possible to defer detailed requirements (or, alternatively,
accept changes to BRUF) late in the project without incurring
exponentially increasing costs; conversely, if interdependence
is high, then late changes generate exponential cost increases
(Beck, 2000), which is the plan-driven assumption.

However, feature independence needs to be met in many
situations. Rather, individual features and entire applications
are often unavoidably interdependent – they must be built in a
particular order or coordinated fashion, leading to the need for
a more plan-driven approach.

Interdependence can arise in several ways. One way is
simply the familiar example of systems that involve multiple
application layers, such as a dynamic website leveraging
presentation, business logic, and a database. For example, let’s
consider the same IT consulting group shown in Figure 6. They
indicate that one of their typical small web projects exhibits a
high level of independence, per the agile idea. However, they
also indicate that when the project involves back-end systems
in the build, the level of Interdependence jumps substantially,
forcing them to plan the project to avoid critical problems, such
as data loss. (Also note that anticipating discussion of the non-
functional dimension of Integration later in Section 4.2.4,

Interdependence and Integration here would be elevated, but for
different reasons: Interdependence arises because the system
designs must be constructed in a specific manner in relation to
each other. In contrast, Integration arises because those multiple
systems must be designed to operationally interact with each
other.)

Note that this increases the Criticality of the application, as
well – a subject to which we will return in the discussion of
Non-Functional Requirements. These impacts are indicated for
both Interdependence and Criticality by the yellow stars and the
arrows pointing outward toward the edge of the graph. The
overall, revised red line indicates that even groups that are
committed to agile principles and practices may need to deviate
from them in relatively common circumstances.

We complete the section on Interdependence with one more
example, that of a large manufacturing company that
implements complex, aftermarket modifications to large trucks.

Overall, typical projects for this organization plot near the
edges of the radar chart, as shown by the brown line in Figure
8. The use of brown reflects that these are “brownfield” projects
– meaning enhancements to existing systems that are already
large, complex, integrated with other systems, and used across
multiple facilities. However, the Senior Manager of this group
noted that individual, “greenfield” systems – meaning new
systems built from scratch – often start out in a much more agile
way: small, simple, and originating independent of other
systems within a single facility. This can be especially true of
systems that originate with an end user in a single
manufacturing facility to solve a single problem. See the green
line in Figure 8. However, when such systems are identified as
being valuable, they are often extended to other facilities and
matured with additional features and integration with other
systems. In this way they become enterprise systems, with
increases in the Number, Complexity, and Interdependence of
features to be constructed. Similar to the previous example in
Figure 6, the non-functional requirement of Integration also
increases, as the system needs to be designed to operationally
interact with other systems in the enterprise environment.
Overall, the effect is the same: a system that could be initiated
in an agile manner requires more and more planning over time,
as reflected in the changes in the chart from the green line to the
brown line and arrows highlighting the movement toward the
edge of the chart.

4.1.3 Clarity and Stability. The Value of BRUF Over Time.
We next consider two related project characteristics impacting
BRUF: Clarity and Stability (see also Spurrier & Topi, 2017).
Clarity is the degree to which we understand (or can with a
reasonable level of effort understand) software requirements,
including features and designs. A central agile belief is that
BRUF holds no initial value because it is very difficult or
impossible to accurately discover and structure requirements
prior to illustrating the ideas in functioning code. Not
surprisingly, plan-driven assumes the opposite: BRUF can
provide substantial value because it is possible to determine a
well-structured set of requirements with reasonable effort and
time (Leffingwell, 2007, p. 20).

Journal of Information Systems Education, 34(2), 148-178, Spring 2023

160

Figure 5. Radar Chart for Typical Projects at a Health Care Provider

Figure 6. Radar Chart for Typical Projects at an IT Consulting Firm

Journal of Information Systems Education, 34(2), 148-178, Spring 2023

161

Figure 7. Impacts of Interdependence on Software Change Costs as a Project Executes
(Spurrier & Topi, 2021; Copyright © 2021 Prospect Press)

Figure 8. Impacts of Greenfield Systems Evolving into Mature Enterprise-Level Systems

Journal of Information Systems Education, 34(2), 148-178, Spring 2023

162

Stability, in turn, is the degree to which software
requirements remain unchanged over time. Numerous sources
advocating for the benefits of the agile approach (e.g.,
Augustine et al., 2005; Cockburn & Highsmith, 2001; Sarker &
Sarker, 2009) suggest that software requirements continue to
change faster than in earlier eras because of the increasingly
dynamic nature of the organizational domains within which the
systems are used. Consequently, the initial value of BRUF
would quickly go down because the change in the
organizational environment would reduce the alignment
between the initially documented and currently needed
requirements. Therefore, agile believes strongly in specifying
requirements as late as possible. Not surprisingly, plan-driven
takes a different approach and builds on the assumption of
requirements stability and suggests that BRUF will continue to
be valuable during development.

These dynamics are illustrated in Figure 9 (first published
in Spurrier and Topi, 2021). These points are illustrated by a
software development manager for a large insurance broker.
His software group explicitly distinguishes between “Enhance
the Business” (ETB) projects, in which mature enterprise
systems are given a relatively small number of enhancements
(as brownfield projects), versus “Research and Development”
(R&D) projects, in which a team works to develop a completely
new and generally unclear set of software requirements (as
greenfield projects). He describes these as different “pillars” of
development within the same IT group. The ETB projects are
thoroughly planned, starting with formal roadmaps and
continuing through BRUF that is explicitly adjusted from 80%
(complemented with 20% agile emergent requirements during
development) down to 40% (with 60% emergent), depending
on the Clarity of the requirements. In contrast, the R&D
projects exhibit low Clarity and Stability, leading to a highly
agile project approach, including requirements.

Figure 10 illustrates this distinction, with the green line
representing a typical R&D, greenfield project – agile, except
for frequent issues of needing to test new technologies and,
consequently, needing expanded IT Team Skills. The brown
line represents the situation for ETB, brownfield projects, with
Clarity and Stability explicitly considered (and here
emphasized with arrows) when determining the optimal level
of BRUF. We conclude this section with one final example,
specifically highlighting the impacts of lower-than-anticipated
Stability. The interviewee was a project leader for a health care
software firm focusing on implementing advanced document
search capabilities across multiple systems. As shown in the
radar chart, the non-functional requirements were daunting,
with very high volumes of documents to search, concerns over
missing or losing document data, and the need to integrate with
an external search technology vendor and many underlying
client applications systems. In contrast, the functional
requirements for document search were not that large, with
relatively few fairly simple use cases. In this case, the IT group
still planned on significant BRUF (75% – see green line in
Figure 11) because those requirements were understood to
exhibit high Clarity and Stability. However, the requirements
turned out to be less stable than anticipated, causing the group
to revise their level of BRUF down to 50%. (See the arrow
reflecting the change to the revised, red line in Figure 11.)

4.2 Non-Functional Requirements and Big Design Up Front
While functional requirements are the traditional focus of
business analysts and product owners, non-functional
requirements (NFRs) pertaining to the “ilities” – scalability,
extensibility, reliability, security, and contractual and legal
requirements (Leffingwell, 2007, p. 222) – are equally
important to project success. The plan-driven architectural
effort to systematically address these NFRs is sometimes called
“Big Design Up Front” (BDUF) (Boehm & Turner, 2004, p.
42). This contrasts the agile approaches, which generally do not
even define a separate architectural role (Leffingwell, 2011, p.
388). Rather, agile prefers to allow a system’s architecture to
emerge organically during the development effort (Agile
Manifesto, 2001; Leffingwell, 2011, p. 54), which recognizes
that for small systems in uncertain environments, the effort of
BDUF may not be worth it (Boehm & Turner, 2004, p. 42). On
the other hand, in enterprise systems, the high costs of NFR
failures typically justify moving from a purely agile emergent
architecture toward plan-driven intentional architecture
(Leffingwell, 2011, pp. 386-387). This, in turn, justifies the
need to engage the services of technical specialists, such as
architects, security specialists, infrastructure specialists, and
others, who may live outside the development team
(Leffingwell, 2011, p. 54).

As with functional requirements, the choice in relation to
NFRs between agile emergent architectures versus intentionally
architecting a system via BDUF is not binary. Teams can and
do make intelligent choices based on the project characteristics.
The following examples illustrate how enterprise development
leaders strike that balance.

4.2.1 Performance: Preparing to Carry a Heavy Load. We
begin with the NFR of Performance, which is the amount of
work a system must perform in terms of volumes of users or
transactions. This typically includes speed and reliability
metrics, such as transaction throughput, response times for a
given number of users, uptime during normal business hours,
etc. Performance can be viewed as the NFR analog of the
functional requirements of Size and Complexity: a system with
high Performance requirements is “large” in terms of NFRs,
analogous to the way that a system with many complex
functional requirements is large.

In this light, it is unsurprising that a system needing to
support, for example, millions of simultaneous users would
need BDUF to ensure it performs adequately. What is more
interesting is to consider situations in which such a project
would not require high BDUF. Such a circumstance was
described by a senior developer working to create an extremely
large survey solution for a government entity. Had that solution
needed to be created from scratch, that greenfield project would
clearly have needed extensive intentional architecture to ensure
performance, as shown by the green line in Figure 12. However,
in this case, the solution was based on a series of existing third-
party components already architected to scale to nearly these
performance levels. While this did not reduce the need for
BDUF to agile levels, it did reduce the planning level needed
for this project's Performance dimension. (Figure 12 shows the
arrow pointing to a lower requirements level with the red line.)

Journal of Information Systems Education, 34(2), 148-178, Spring 2023

163

Figure 9. Agile vs. Plan-Driven Assumptions Regarding Clarity and Stability (Spurrier &
Topi, 2021; Copyright © 2021 Prospect Press)

Figure 10. Radar Chart for Comparing “Enhance the Business” and R&D Projects

Journal of Information Systems Education, 34(2), 148-178, Spring 2023

164

Figure 11. Impact of Stability on Emphasis on BRUF at a Health Care Software Vendor

Figure 12. Impact of Existing Capabilities on Performance Planning Needs

Journal of Information Systems Education, 34(2), 148-178, Spring 2023

165

Again, this is analogous to Size and Complexity in
functional requirements: a project that adds a small number of
enhancements to an existing large number of features is smaller
than a greenfield project needing to create all those features
from scratch.

4.2.2 Supportability: Building for the Long Haul. We turn
next to Supportability, which is the degree to which a system
needs to be easily reconfigurable and easily updatable with new
features over time. We offer two examples in this category: one
illustrating the danger to Supportability from using an agile-
functional-requirements approach where it doesn’t fit, and
another illustrating ways to improve Supportability through
intentional architecture.

The first example is from the CEO of an insurance
organization that was responsible for health insurance claims
processing system. This legacy system was functionally very
large, containing many complex features. The team was
pursuing a project to rewrite the system using a more modern
technology stack and extend it with public internet-facing web
interfaces. The project, not surprisingly, is at the outside edge
of the radar chart (see Figure 13), with high Criticality,
Performance, and – especially pertinent to this example –
Supportability needs (emphasized with yellow stars and a red
star, respectively). Despite this, the project team pursued a
highly agile methodology that eschewed both BRUF and
BDUF. This resulted in what the CEO termed a “disaster,” a
mass of code that no single team member understood and
lacked documentation sufficient for others to learn. As such, the
system could not be effectively configured or operated. The
CEO noted that, even if short-term operational problems were
solved, it would be extremely difficult for team members in
later years to update and extend the functionality.

The second example is from a deeply experienced software
development leader who had created and extended many
enterprise-class applications in multiple organizations. This
leader noted that he had changed how he architected such
solutions over time. Specifically, early in his career, he would
plan a large system with many complex features as a single,
large application. This is the typical architecture of mainframe
systems, often resulting in a mass of millions of lines of code
that are difficult to maintain and extend, even though
enterprise-class systems typically need to be used in this way
for many years (see the green line in Figure 14). Over time,
however, he learned to architect such large-scale applications
as a series of small, interacting applications, each focused on a
specific capability area. This is the architectural concept of
microservices, which, at its core, transforms one very large
application into a series of smaller ones. While this does not
reduce Supportability requirements (highlighted with the red
star in Figure 14), it does make it possible to manage each of
the microservices in a more agile manner by reducing the
Number and Complexity of features in each microservice, as
well as reducing team characteristic requirements at the
microservice level (see arrows pointing to the red line in Figure
14). There is a degree of increased planning required to
coordinate the Interdependence of the microservices, but the net
effect is to make it easier to support the overall application
environment over time, and especially in a more agile way
overall. A key point here is that designing for microservices is
fundamentally a BDUF activity to produce an intentional
architecture for meeting Supportability requirements.

4.2.3 Criticality: Preventing High-Cost Failures. The
Criticality NFR represents the costs resulting from defects and
failures (Boehm & Turner, 2004, pp. 55-56). An application can
have high Criticality requirements for several reasons: being
mission critical to the organization, storing and managing
sensitive data (especially when facing the public internet),
being subject to legal audit or regulation requiring formal
documentation, or impacting human safety. While the latter is
not typically a major concern for most enterprise systems, the
other three are quite common. For example, news dispatches of
security breaches and ransomware attacks crippling the ability
of organizations to function have become all too common.

As with the Performance NFR, these factors are so
commonplace that pointing to enterprise systems that do not
require BDUF to handle high Criticality is more challenging
than pointing to the great majority that does. In the current
examples, we point to one example that requires a relatively low
level of criticality: a project for a retail website to send order
status messages to customers.

While this project involved large volumes of
communications with external customers, there are several
reasons why this project needs to exhibit more criticality. First,
this capability is not mission-critical because the overall
application environment already provides other modes of
communication to customers, including emails, calls to
customer service representatives, and simply looking up the
order on the main website itself. Second, while the customer
order data is confidential, the security concerns are relatively
low because the shared data is highly summarized (order
number, shipping method, and dates). Furthermore, text
messaging is one-way, minimizing the risks of hacking. Finally,
there are no impacts on human safety.

This set of factors is portrayed in Figure 15, with the red
star highlighting the somewhat reduced level of Criticality.

4.2.4 Integration and Technology: Imposing Order on the
Unknown. Two NFR dimensions that frequently go together
are Integration and Technology. Integration is the degree to
which a system needs to operationally interoperate or exchange
data with other systems (and, as noted in Section 4.1.2, is
distinct from Interdependence, which pertains to the build order
dependencies of software construction). Technology is the
degree to which a system needs to be built or enhanced using
new, unproven, or not previously integrated information
technologies. A good example of this is a systems project led
by a senior director of IT at a manufacturing company. The
project focused on integrating the functioning of two sets of
systems that were already familiar to the IT team: a third-party
COTS enterprise resource planning system used for
administrative functions and internally developed
manufacturing systems that ran the factories. These two
different sets of systems made Integration a major issue, indeed
the primary goal of the entire project. But this integration
challenge was magnified by the decision to utilize a new, third-
party workflow and data integration platform that the team had
never used before. This impacted the team by compelling them
to expand their IT Skills – a topic we will explore further below.
This situation is portrayed in Figure 16, with Integration,
Technology, and IT Team Skills emphasized with the red stars.
This example is similar to the more general Integration needs

Journal of Information Systems Education, 34(2), 148-178, Spring 2023

166

from the manufacturing company described in Section 4.1.2,
Figure 8.

Technology can become a major planning issue aside from
the needs of any specific project. An example is that of a major
financial services company with well over 100,000 employees
in multiple divisions pertaining to banking, investments, and
wealth management. Each division has its own large,
sophisticated, division-level IT group. This results in the
“maximum plan-driven” profile shown in Figure 17.
Furthermore, pertaining specifically to Technology
(highlighted with the red star), the bank is faced with the need
to compete by utilizing multiple, burgeoning emerging
technologies, including machine learning, blockchain, quantum
cryptography, cloud computing, augmented reality, and many
others. The point is that the overall organization needs a top-
down evaluation and plan for employing these technologies that
is consistent across the divisions – this is a function of one of
our interviewees in a Project Management Office (PMO) and
Tech Strategy Team.

4.3 Team Characteristics: Driven by Requirements but
Driving Approach
Finally, in this section, we come to Team Characteristics,
including IT Team Size, IT Team Locations, IT Team Skills,
and Customer Team characteristics. While these are not
requirements in and of themselves, they can profoundly impact
the choice of project approach. Agile methods generally address
team characteristics with prescriptive recommendations: teams
should be small, colocated (including direct, continuous
availability of the customer to the IT team), and highly skilled
in the chosen technology tools and development processes
(Boehm & Turner, 2004). Deviations from these ideals are seen
as incompatible with the effective use of agile, including by
agile advocates.

Team Characteristics interact with functional and non-
functional requirements in two fundamental ways. First,
analogous to the idea that form should follow function, Team
Characteristics ideally should fit with requirements. For
example, in the previous example, high Technology needs to
imply a team needs to increase their IT Team Skills. For
another, a large systems project requiring many new, complex
functional requirements implies the need for a large IT Team
Size – in particular, many developers and possibly testers (if
QA is organized as a separate function).

Second, Team Characteristics can directly impact project
approach, independent of functional and non-functional
requirements characteristics. A classic example is that of IT
Team Locations: as noted, agile assumes that the entire IT and
customer team will be colocated. But offshoring developers is
still highly common, increasing the need for plan-driven BRUF
to support team communications regardless of the project’s
functional and non-functional requirements.

4.3.1 Customer Team: The Wellspring of All Requirements.
We begin with Customer Team characteristics for the simple
reason that all functional and non-functional requirements arise
from the needs of business customers. Characterizing the
“customer” along a single dimension may seem overly
simplified, given that our extended home grounds model
allocates three dimensions for the IT Team. This is a choice to
keep the model from having too many dimensions to be useful.
Furthermore, however, this single dimension can usefully

characterize the Customer Team against the agile ideal: using
specifically the Scrum model, a single Product Owner
(Schwaber & Beedle, 2002, p. 34) providing a single source of
full-time subject matter expertise in the same, single location as
the IT Team (Beck, 1999). The Customer Team may depart
from this ideal in many ways, with the theme that “single”
becomes “many”: many subject matter experts (SMEs); many
different areas of expertise; multiple locations; facing diverse
business processes, market practices, and regulations.

This is illustrated by a development leader in an insurance
context who faced the need to develop two systems that
addressed the same fundamental business need – one for the
United States and one for Europe. While the details of the
requirements certainly varied across the Atlantic Ocean, the
bigger issue for this leader was that in the United States the
requirements were driven by a single SME with unclear and
rapidly changing requirements – essentially a product owner.
This SME valued getting a working system to market quickly
and was willing to accept relatively few simple features. In
contrast, in Europe, seven different SMEs valued capturing and
delivering highly formal known and extensive requirements.
The situation is graphed in Figure 18. This led the development
leader to pursue two radically different project approaches: a
highly agile approach for the United States (red line) and a
much more formal, hybrid approach for Europe (green line). As
a second example, we consider the challenge faced by the
solution architect for a COTS product vendor selling big data
analytics tools to a wide range of corporate clients. This group
faced an extremely high number of feature requests, requiring
them to utilize a formal requirements management tool, like the
health care organization described in Section 4.1.1. However,
the challenge here of tracking and managing requirements was
likely even greater because these were external clients, and
those clients were highly diverse in their requests and,
especially, the speed at which they wanted them fulfilled. In
particular, many of the clients on the west coast were tech
companies that wanted quick delivery of new features. Other
clients on the east coast were highly regulated financial services
companies that objected to implementing highly planned
updates to the product more frequently than every quarter.

In essence, this product vendor faced the challenge of trying
to simultaneously enhance the product in a highly agile and
highly plan-driven fashion. This is portrayed in Figure 19, with
the green line representing the tech companies and the red line
representing the financial services companies. The arrows
indicate that this diversity across the five requirements
dimensions emanated from this highly diverse and complex set
of clients (Customer Team highlighted with the red star). How
did the vendor handle this? The answer was to utilize a highly
plan-driven formal requirements process, which then identified
small, simple, and independent features that could be created
and deployed outside of the quarterly release cycle.

In general, this is typical of the challenges that product
managers and architects for COTS product vendors face.

4.3.2 IT Team Size: Challenges of Communication and
Coordination. Shifting to the IT Team Characteristics, we
begin with IT Team Size. Agile authorities uniformly specify
that agile teams should be small. For example, in Scrum, the
team should consist of no more than nine members (Schwaber
& Beedle, 2002, p. 34-35). Beyond this limit, agile methods do
not work well.

Journal of Information Systems Education, 34(2), 148-178, Spring 2023

167

Figure 13. Radar Chart for a Large-Scale Insurance Claim Processing System Project

Figure 14. Impact of Moving to a Microservices Architecture Illustrated with a Radar Chart

Journal of Information Systems Education, 34(2), 148-178, Spring 2023

168

Figure 15. Radar Chart Showing a Project with Low Criticality Requirements

Figure 16. Radar Chart for a Project with High Integration, Technology, and IT Team
Skills Requirements

Journal of Information Systems Education, 34(2), 148-178, Spring 2023

169

Figure 17. Radar Chart for Technology-Intensive Projects at a Large Financial Services Provider

Figure 18. Impact of Heterogeneity of Subject Matter Expert Team on Project Characteristics

Journal of Information Systems Education, 34(2), 148-178, Spring 2023

170

Figure 19. Impact of Customer Culture on Project Characteristics

This position was supported by an enterprise architect in a
technology consulting firm that builds custom websites for
external clients. This group emphasizes doing small projects
that can be done in an agile fashion. These projects can be fairly
agile with up to 15 team members, although 8 to 10 is
preferable. Unlike the technology consulting group described in
Section 4.1.1 Figure 6, this group accepts large projects. But,
once team size reaches 25 or higher, they indicated that they
have to “step outside the rigid rules of agile,” adapting those
rules into a hybrid approach combining plan-driven and agile
techniques. See Figure 20, with the arrow indicating the move
in IT Team Size from that appropriate for agile to levels
requiring hybrid techniques, leading to a profile change from
the green line to the red line.

Note that some organizations will try to retain agility in
larger projects by splitting a large team into several agile-sized
teams. This can work well when the overall solution is
structured as a series of small interacting applications (see the
discussion of microservices in Section 4.2.2). But structuring
that way then requires additional planning and coordination
using such techniques as “scrum of scrums” (Rubin, 2013, pp.
218-220) or more elaborate frameworks, such as the Scaled
Agile Framework (SAFe) (Knaster & Leffingwell, 2017).

4.3.3 IT Team Locations and IT Team Skills. Finally, we
tackle the dimensions of IT Team Locations and IT Team
Skills. We discuss these dimensions together because, while.
high levels of one can arise independently of the other, and they
also may interact with each other.

Starting with IT Team Locations, this pertains not just to
the challenges of working in multiple locations – contrary to
agile prescriptions – but also the complications of those
locations, especially when a local IT team outsources some of
its work to offshore resources: multiple time zones, multiple
native languages and cultures, and/or multiple organizations
(e.g., working with an outside technology vendor supplying
consultants or contractors).

All of these make communication and coordination more
difficult, forcing teams to become more plan-driven, especially
with respect to BRUF. Furthermore, large IT Team Size leads
to multiple IT Team Locations, for example, because a local
team may struggle to recruit enough skilled IT personnel in a
single office or city.

In contrast, high IT Team Skills point to the need for many
technical or software development process skill sets, especially
when the team currently lacks those skill sets. This often leads
to team member specialization. It can arise in a straightforward
manner independently of other dimensions; for example, recall
the manufacturing team in Section 4.2.4 that needed to learn a
new workflow and data integration platform utilized in an
integration project.

Pointing to interactions between these dimensions, multiple
IT Team Locations can also lead to IT Team Skills challenges,
as expanding a local team to other locations can lead to the need
to integrate new team members who initially may lack
knowledge of the development tools, current application code,
business requirements, or the development process that the
local team utilizes.

This is illustrated by an IT program manager leading the
development of back-office administrative systems for a high-
tech manufacturer: his local team was in the United States, but
he also was utilizing lower cost, offshore team members in
India. He noted that he had to execute in a more plan-driven
manner because of this and that his offshore team members
were not all “superstars,” leading him to spend more time
documenting requirements in a formal manner. The joint impact
of offshoring to multiple locations is illustrated in Figure 21.
The arrows indicate the increases in IT Team Locations and IT
Team Skills, leading to a project profile change from the green
line to the red line.

While the outsourcing example points to one way in which
multiple IT Team Locations can exacerbate IT Team Skills
needs, it is also true that high skills needs can lead to the need
to locate the team in multiple locations, even when the IT Team
Size is small.

Journal of Information Systems Education, 34(2), 148-178, Spring 2023

171

Figure 20. Impact of Team Size Increase on Project Approach Profile

Figure 21. Impact of IT Team Skills and Location Requirements on Project Approach Profile

Journal of Information Systems Education, 34(2), 148-178, Spring 2023

172

An example of this is a consultant running a big data project
for a client. In this case, diverse, specialized skill set needs led
to a small team of only 10 members being located in five
different locations because of the need to recruit the “best of the
best” in these skills.

5. VARIATIONS AND EXCEPTIONS TO THE

EXTENDED HOME GROUNDS MODEL

The examples we have described illustrate that the extended
home grounds model provides insights explaining IT
professionals’ choices of the project approach in a wide range
of projects impacted by numerous dimensions. Furthermore, as
one of the respondents, a leader for a software development
consulting group, confirmed, the reality today is that the
approach chosen needs to be tailored to project circumstances
based on a variety of factors, such as large versus small projects,
characteristics of the development environment, team and client
locations, and so on. The message is clear: there is no one best
way to develop software. Rather, the optimal choice should
balance agile and plan-driven techniques guided by key project
characteristics.

However, that same development leader quipped the
familiar aphorism: “All models are wrong, but some are
useful.” That is to say, the extended home grounds model we
have presented provides significant explanatory power, but
there are exceptions, which we detail in this section.

5.1 Data Analytics
The plan-driven-agile continuum was best aligned with
environments where transaction processing was the dominant
application function. However, in three environments where
data analytics was dominant, and transaction processing was
nearly absent, neither plan-driven nor agile approaches made
sense. Rather, for requirements, respondents did significant up-
front planning for creating a data schema and importing data
sources. Still, then the actual use of the populated data for
analytics became much more ad hoc, typically without even the
use of agile user stories of the form “As a <user>, I want/need
to <do a software function> to <achieve a business goal>.”
Furthermore, these types of projects tended to plan and execute
their analytics work on a daily basis, without the use of fixed-
cadence iterations or sprints. Here, traditional weeks-long
sprints gave way to an “even more organic” approach than
traditional agile practices.

5.2 Artificial Intelligence
Similar to the prior point, the model did not have a good fit with
two cases with environments emphasizing the implementation
of trainable AI. Both were executed in the context of data
analytics, but it is worthwhile noting them as raising a more
general issue of a need for new project execution frameworks
in cases where machine learning methods begin to displace
traditional human-driven coding of system functionality. One
respondent stated, “There’s a new emerging need in the
industry to do nontraditional coding methods, and that whole
[regular software development] process gets thrown out the
window.” Furthermore, this respondent noted that effectively
combining the development of traditional and artificial
intelligence systems is a difficult problem.

As such, explaining this is an evolving issue for the field of
practice rather than a pedagogical one.

5.3 Making BRUF More Agile
While acknowledging the importance of BRUF in many project
circumstances, two of the more experienced development
leaders noted innovations in creating BRUF in an iterative
manner aligned more closely with the development iterations or
sprints in which the features would be constructed. One
respondent called these repeated, small BRUF iterations
“shadow sprints” – in essence, doing final elaboration of
requirements details two to three sprints prior to the sprint in
which the features were to be built. Another alluded to the same
basic concept, using the phrase “rolling cycles” of
requirements.

5.4 Software as the Product
One respondent argued that the framework made sense for
systems that support a non-IT product or service. This would be
the case for most systems contemplated in the examples.
However, when the system itself is, in essence, the product,
especially in online retail contexts, then a highly agile approach
would be appropriate: “if you’re working for somebody like a
Netflix … I think … pure agile works better for them because
they have one product … and they have to be up to date with
the market constantly.” Note that this could be true of any
customer-facing site that is a primary face of the organization
and source of competitive advantage in directly selling and/or
delivering products and services – for example, social media
companies, retail websites, news providers, and so on.

5.5 Creating Commercial Off the Shelf (COTS) Software
Note that the exception described in Section 5.4 is highly
distinct from COTS products providing transactional or data
analytics functionality to external client companies. While
these applications must compete against other COTS products
in the same niche, in this type of situation, the need to
consolidate feature requests from multiple customers and then
deliver those features on a promised release timeline compels a
much more conventional, essentially plan-driven approach. In
essence, managing COTS software from a vendor perspective
intensifies the need for plan-driven techniques by dramatically
increasing the number and diversity of business customers.

5.6 Implementing Commercial Off the Shelf (COTS)
Software
In addition to challenges of creating a COTS product from a
software development perspective, we note that implementing
highly configurable COTS systems, such as ERP and CRM
systems, creates specific challenges not directly captured in the
extended home grounds model. That is, given that the design of
these systems already exists (rather than needing to be coded as
part of the project itself) and that the design may be
implemented in similar contexts hundreds of times, it is
typically the case that such COTS systems are implemented
using a well-defined, repeatable series of steps – an approach
that is highly plan-driven, including not just requirements but
also implementation. This was the case for one respondent who
led implementations of a COTS capacity requirements planning
(CRP) system.

But functional and non-functional requirements for these
systems are already largely addressed by existing technology
and application architectures. This makes the extended home

Journal of Information Systems Education, 34(2), 148-178, Spring 2023

173

grounds model less applicable for software configuration
projects than for software construction projects.

The takeaway is that some COTS implementations are
among the most “pure” plan-driven system project approaches
seen today. Even agile advocates acknowledge that agile
approaches such as Scrum may not be a good fit in these
circumstances (Rubin, 2013, p. 8). At the same time, extensive
research on COTS-based enterprise systems implementation (as
reviewed, e.g., in Ali & Miller, 2017) suggests that despite
decades of research and practice in this area, there is still a need
for better standardized implementation models (Ali & Miller,
2017, p. 23).

5.7 Organizational Culture
Finally, we address the argument introduced in Section 1.1 that
the main barrier to adopting agile is stubborn resistance from
traditional, non-agile organizational cultures. While the original
Boehm and Turner (2004) home grounds model includes
Culture as a key dimension, our extended home grounds model
deemphasizes culture. In our model, culture exists as an aspect
of Customer Team – “Customers value formal project planning
and management” – and as an aspect of IT Team Skills – “Team
needs training on the software development process.” In
essence, our model focuses on key project characteristics that
should rationally impact optimal project approach selection
rather than focusing on traditional cultural values that do not
provide a rational basis for that choice.

This is not to say that culture is unimportant in selecting and
adopting software development project approaches. For
example, in Section 4.3.1, we saw a software development
leader who needed to tailor different project approaches based
on customers' differing cultural values on different continents.
We can also point to other examples where cultural values
within the IT team impacted the conduct and success of the
project.

For example, we recall the CEO in Section 4.2.2 who faced
a “disaster” with a team pursuing a highly inappropriate agile
approach in updating and extending a complex health insurance
system. This CEO noted that, even in the face of project failure,
several of his younger development team members in their 20s
and 30s were deeply unhappy with a move to a hybrid approach.

From the opposite perspective, the respondent we
highlighted in Section 5.6 implementing COTS CRP systems
recounted his experiences in another context: a food and alcohol
distribution company. This company operates in a market niche
that has been relatively stable and somewhat insulated from
competitive pressures. As such, the IT staff in this company was
dominated by 50- and 60-year-olds who had grown up
professionally with and were comfortable with plan-driven
techniques. Not only did these mature professionals resist the
introduction of agile methods, but their values also led to
younger, agile-oriented IT team members leaving after a short
period of time.

The message here is clear: culture can and does matter in
customer and IT teams. However, based on the broad range of
noncultural issues we explored, it is also clear that culture is not
the main barrier to adopting agile methods in enterprise systems
development. Rather, the objective dimensions of those projects
in terms of functional requirements, non-functional
requirements, and team characteristics compel IT leaders to
choose plan-driven and hybrid approaches over “pure” agile
approaches.

6. USE OF THE EXTENDED HOME GROUND AND

RADAR CHART MODEL TO SUPPORT SOFTWARE
DEVELOPMENT APPROACH SELECTION IN

PRACTICE AND TEACHING

The complexity of our model, with its 14 dimensions, arises
directly from the need to reflect the complexity of real-world
systems projects. Because of this complexity, we have used
nearly two dozen case studies to explain it.

In this section, we discuss general approaches for using a
project radar chart to determine the optimal development
approach for the project in the context of the extended home
grounds model. This includes use both by IT practitioners and
by teachers and students in MIS courses. We begin in Section
6.1 with a discussion of how to teach the rudiments of the model
to both audiences. This includes utilizing models that are
straightforward in plotting and interpretation.

With the rudiments of the model in hand, we then turn to
how actually to utilize the models in more realistic situations.
We begin by discussing use by practitioners in Section 6.2, then
turn to use by students in MIS course settings in Section 6.3.
We utilize this sequence because students are, after all, budding
IT practitioners; thus, practitioner use forms a baseline that
students can use in projects and classroom settings.

Throughout this Section 6, we reflect on our experiences in
teaching the models to a variety of audiences.

6.1 Learning the Rudiments of the Model
Because of the complexity of the model, our experience with all
audiences has been that the model takes some time to learn. For
example, the meaning, impacts on the project approach, and
interactions of each of the 14 project dimensions will typically
require some explanation (for example, explaining the impacts
of Clarity, Stability, and Interdependence as portrayed in
Figures 7 and 9). Even more fundamentally, many individuals
will not clearly understand the key distinctions between agile,
plan-driven, and hybrid project approaches (as summarized in
Figure 1). Furthermore, before utilizing the model in practical
situations, individuals should practice plotting project
dimension values on a radar chart using some straightforward
examples.

In academic workshops we have run for information
systems teachers (Spurrier & Topi, 2020a; Spurrier & Topi,
2020b), we found that communicating this information requires
about an hour. In our own systems analysis and design (SA&D)
classrooms, we have found that students can also grasp the
rudiments of the model in a single 75-minute class; we do note;
however, we taught this topic after the mid-point of the
semester, after the students had learned the elements of the
hybrid approach, including detailed requirements analysis,
project planning, and sprint management.

We also note that we have found it useful to portray the
radar charts utilizing web-based, shared-experience
technologies. For example, we have utilized Google Sheets
spreadsheets in which participants learning the model could
plot their own project values against each project dimension in
a series of project examples, with the plot emerging on a
spreadsheet-generated radar chart. Our Google Sheets
spreadsheet included multiple duplicate tabs, enabling multiple
individuals or small groups to plot their values separately and
then easily compare outcomes via screen sharing.

Journal of Information Systems Education, 34(2), 148-178, Spring 2023

174

Project examples that we typically use to explain the model
include the following:

• Prototypical agile project: Building a simple
mentoring application designed to connect mentors and
mentees, sharing noncritical textual data and supporting
about 100 users. This results in low functional
requirements (low BRUF), low non-functional
requirements (low BDUF), and an expectation of
utilizing an agile-style team.

• Prototypical hybrid project: The complete rewrite of
a complex, legacy COBOL mainframe manufacturing
system supporting dozens of factories with large
numbers of users. The rewrite would require a new
systems architecture based on JavaScript and the
employment of new technologies, such as machine
learning, unfamiliar to an existing, small systems team.
This results in high functional requirements (high
BRUF), high non-functional requirements (high
BDUF), and high team requirements (from the need to
expand team skills to a new tech stack and new
technologies, as well as likely requiring a much larger
team in multiple locations).

• High BRUF/Low BDUF project: Major functional
feature upgrades to an existing health insurance claims
processing system. The existing architecture is fine in
terms of non-functional requirements. This results in
high functional requirements (high BRUF) but low non-
functional requirements (low BDUF). IT Team Skills
are likely low (relative to current team capabilities), but
it is likely that IT Team Size will increase, as may IT
Team Locations.

• Low BRUF/High BDUF project: Creation of a social
media platform supporting several straightforward use
cases, including posting, uploading files, and “liking”
and commenting on posts. The application, however,
will contain highly confidential data and need to scale
to millions of users. This will require low functional
requirements (low BRUF) but high non-functional
requirements (high BDUF). IT Team Skills will likely
be high, in part because of the need to bring in the
expertise of security and infrastructure specialists.

We note that the need to train participants in the rudiments

of the extended home grounds model should not be considered
a barrier to adopting the model. Rather, this training is valuable
in itself, as it expands the thinking and understanding of those
participants in making a comprehensive sense of project
dimensions relevant to the optimal choice of approach for a
given systems project.

6.2 Use by IT Practitioners
For practitioners, we suggest that they first chart their team or
project’s situation against each of the radar chart dimensions.
For each dimension, the answer as to whether the dimension
level should be valued as high (i.e., plotting at the outer edge of
the chart), low (plotting near the center of the chart), or medium
(in between) should be answered by the practitioner in the
context of their team’s situation: “Is this dimension high, low,
or in between, by my own judgment, given my team’s
circumstances and practices?” For example, for some
dimensions, such as IT Team Size, absolute values are helpful;
e.g., agile views teams numbered in the single digits as

compatible with agile assumptions (low, in our model), while
teams moving upwards from double digits toward triple digits
are not compatible (high, in our model). Similarly, whether a
team is colocated or not is an absolute distinction.

But, as has been noted in other studies (e.g., Marek et al.,
2021), teams do have some ability to adapt to impacts such as
distributed and remote work. Thus, the assessment of the impact
of (in this example) large IT Team Size and multiple IT Team
Locations might be different for a practitioner whose team had
become practiced, for example via communications tools and
process techniques, at working in these circumstances, versus
another practitioner whose team had previously been small and
colocated. On the other hand, even with adaptations, we would
not expect a team with over 100 members in multiple locations
to ever be able to be as agile as a team of less than 10 members
in a single location. In general, this recalls our discussion in
Section 2.4 of Highsmith and his APM model (2010): teams can
try to adapt to non-agile project circumstances using an agile
mindset, but they will often still end up with non-agile,
“heavyweight” project processes.

Handling the other dimensions would be similar: a “low”
number of features for a team used to multimillion-dollar
feature budgets (say, a global bank) could be similar to a “high”
number of features for a team used to operating at a much
smaller scale (such as a small, early-stage start-up). A team that
has already implemented and used large-scale, robust
architectures could evaluate objectively high non-functional
requirements differently from a team that must dramatically
expand its architecture in the face of those same requirements.
As these examples demonstrate, the numeric values associated
with the 14 dimensions will depend on the organization, its
level of resources, its experience, its size, and its culture.

Once the chart is plotted, the practitioner should note the
shape of the plot overall. In particular, the focus should be in
areas where the model suggests that a less-agile approach is
warranted. For example, in the upper right sector of the plot, are
the functional requirements more aligned with agile emergent
requirements (if plotting mostly near the center) versus with
plan-driven big requirements up-front (if plotting mostly near
the outer edge)? In the upper left sector of the plot, do the non-
functional requirements of the project demand big design up
front, or are they lightweight enough to justify a fully agile
approach? Furthermore, are the Team Characteristics
compatible with the Functional and Non-Functional
Requirements Characteristics? For example, if Functional
Requirements are low but IT Team Size and IT Team Locations
are high, then that discrepancy might motivate a change in that
team’s staffing posture.

In all of these dimensions, the practitioner can scan our
examples for similar situations by visually comparing their
team’s chart to examples provided. Note that functional and
non-functional plots may be considered independently, given
the different impacts those requirements have on requirements:
BRUF versus BDUF, respectively. It is important to emphasize
that the specific characteristics of the development approach
cannot be derived arithmetically from the values in the radar
chart – the chart is a visual aide that provides project leadership
with a comprehensive overview of project characteristics and
supports the ultimate decision process.

Journal of Information Systems Education, 34(2), 148-178, Spring 2023

175

6.3 Use by Teachers and Students
The proposed radar chart approach can be used in a variety of
courses related to systems development, including a general
SA&D course in the core of the undergraduate IS major or an
MSIS program, a capstone project course of these same
program types, and specialized software project management
courses in IS and software engineering. Also, advanced
software development courses (particularly project based) can
use the approach to support anchoring the projects better to a
real or fictitious context.

One of the key goals of this paper is to encourage
instructors of information systems courses in SA&D, systems
development, and software project management to make sure
that the following key topics and associated learning objectives
are covered in courses that deal with answering the questions
pertaining to selecting the optimal systems development
approach:

• The role of the hybrid development approach as an
alternative to plan-driven and agile approaches

• The project characteristics that can be used in the
analysis of the fit between a development approach and
the project

• The process for determining the development approach
based on the project characteristics using the radar chart
approach

• Project types with which the radar chart frequently does
not work

As mentioned, the case studies and the radar chart may be

employed in MIS teaching in at least two ways: in senior
capstone projects and in lecture-based courses.

6.3.1 In Capstone Projects. First, when students are
embarking on senior (capstone) projects – especially in team
settings – they can plot and evaluate the characteristics of their
project much as a practitioner would. In student settings, it is
useful to realize that IT Team Skills may typically be high,
given that the students frequently need to learn new technical
skill sets, software development process skills, and teamwork.
(This recalls the IT Team Skills project characteristic
descriptors in Table 1.) On the other hand, IT Team Size will
likely be low, while IT Team Locations may be low (for face-
to-face settings) or high (for distributed learning situations).

As with IT practitioners, students and their teachers may
compare the functional and non-functional requirements
sections to the case study examples provided to find ones that
generally are similar to their current project.

6.3.2 In Lecture-Based Classroom Settings. When used in a
classroom setting – such as in a project management course or
SA&D course – the models and case descriptions may be used
to explain the factors that drive teams toward agile versus
hybrid approaches. Depending on the course subject matter, it
may be useful for the instructor to focus on specific major
categories of the model. For example, in an SA&D course, the
focus on functional requirements modeling may suggest
focusing on that (upper right-hand) sector of the model,
including case studies from Section 4.1. The instructor can then
zero in on specific characteristics of interest and then utilize the
case studies that specifically explain those dimensions.
Similarly, when focusing on non-functional requirements, the
instructor may wish to focus on case studies from Section 4.2.

Note that our own experiences have been in teaching the
model after the mid-point of an SA&D course that incorporates
some project management skill sets. We have also utilized our
own SA&D textbook (Spurrier & Topi, 2021), which includes
a chapter specifically focused on explaining the model,
including a series of concrete examples illustrating use of the
model. For instructors not utilizing our textbook, this paper may
be used to support the coverage of the key aspects of the model.
It may also be useful for instructors to note the impact of Team
Characteristics on the modeling approach being taught,
including case studies from Section 4.3. These Team
Characteristics may be especially germane to project
management courses. Again, for many students, IT Team Skills
will be high in the sense that students are still learning modeling
techniques and other technical skills. This may motivate a
greater use of comprehensive BRUF modeling techniques in an
SA&D classroom for a given set of Functional Requirements
Characteristics than those same students might utilize later in
their careers as experienced professionals.

Finally, it is our experience that the model is useful in
helping students understand why learning the hybrid approach,
including comprehensive requirements and associated up-front
project planning techniques, still provides value, even in an era
when agile techniques are especially popular. This recalls the
McKendrick (2020) blog entry noted in Section 1.1 – in an era
where uncritical belief in the near-universal superiority of agile
methods often holds sway, and many students enter the SA&D
course with a view that older, plan-driven methods inherently
lack value and, therefore, are hopelessly out of date. To
counteract this naive and incorrect viewpoint, instructors may,
for example, use the model to analyze realistic situations where
functional requirements are clear, stable, and highly
interdependent. This can help students grasp that, in these kinds
of situations, BRUF employed in the context of the hybrid
approach does provide significant value and, in fact, may be
necessary for project success. Using the model and the cases
presented in this paper has also helped students understand the
differences in the impact of BRUF and BDUF factors. This, in
turn, gives the students more clarity regarding the difference
between functional and non-functional requirements.

7. SUMMARY

A key message of these case studies is that there are many best
ways to develop software. Furthermore, the optimal choice
between agile, plan-driven, and hybrid approaches should be
driven by a project’s alignment with the extended home
grounds model. In contrast, while culture sometimes influences
how teams pursue software projects, it is not the main barrier to
the widespread adoption of agile in enterprise-class projects.
Rather, it is the recognition by IT development leaders that a
wider range of techniques is appropriate and necessary in
promoting the success of ESD projects. We hope that these case
studies and the radar chart tool for analyzing the selection
factors will provide instructors of IS courses focused on
systems development relevant material that will help students
understand the complex, heavily intertwined factors that should
affect development approach choice.

More specifically, we believe the case studies support the
view that enterprise software development is seldom executed
in a purely agile fashion in the real world. This is not a failure,
but, rather, happens because IT development leaders are

Journal of Information Systems Education, 34(2), 148-178, Spring 2023

176

pragmatic and innovative in optimizing their software
development approaches for any given project. Rather than
strictly adopting any specific published agile or plan-driven
approach, organizations actively tune their approaches based on
a wide range of project and organizational characteristics,
including functional requirements, non-functional
requirements, and team characteristics. As such, organizations
need meta-agility, meaning agility in selecting the optimal
systems development approach depending on each project’s
characteristics. It is essential that the students graduating from
computing programs understand from the beginning of their
careers that one systems development approach does not fit all
projects. We hope the material covered in this paper will help
instructors convey this important message.

Furthermore, the extended home grounds model shows that,
while software projects are among the most complex of human
activities, they are not incomprehensibly so. Rather, by
systematically applying the extended home grounds model
using a radar chart, we can readily make sense of key project
characteristics to choose the optimal project approach. This
makes the extended home grounds model, together with the
radar chart technique, a valuable teaching tool with which
instructors can address one of the most fundamental decisions
in an enterprise software development process: selecting the
right development project approach.

In conclusion, over 20 years after introducing and
popularizing agile software development methods, we see the
value of those methods and their limitations. Using this model
and these illustrative cases, we can teach students to focus on
the reality and the principles behind optimally combining agile
and plan-driven techniques in enterprise software development.
Furthermore, we can equip those students to understand and
succeed as they move into that reality as IT professionals.

8. REFERENCES

Adkins, J. K., & Tu, C. (2019). Applying an Agile Approach in

an Information Systems Capstone Course. Information
Systems Education Journal, 17(3), 41-49.

Agile Manifesto. (2001). Manifesto for Agile Software
Development. http://agilemanifesto.org

Ali, M., & Miller, L. (2017). ERP System Implementation in
Large Enterprises – A Systematic Literature Review.
Journal of Enterprise Information Management, 30(4), 1-
30.

Almudarra, F., & Qureshi, B. (2015). Issues in Adopting Agile
Development Principles for Mobile Cloud Computing
Applications. In Procedia Computer Science, 52, 1133-
1140. https://doi.org/10.1016/j.procs.2015.05.131.

Ambler, S., & Lines, M. (2012). Disciplined Agile Delivery.
IBM Press.

Ambler, S. (2014). Examining the ‘Big Requirements Up Front
(BRUF) Approach.”
http://agilemodeling.com/essays/examiningBRUF.htm

Augustine, S., Payne, B., Sencindiver, F., & Woodcock, S.
(2005). Agile Project Management: Steering from the
Edges. Communications of the ACM, 48(12), 85-89.

Baird, A., & Riggins, F. J. (2012). Planning and Sprinting: Use
of a Hybrid Project Management Methodology within a CIS
Capstone Course. Journal of Information Systems
Education, 23(3), 243-257.

Baskerville, R., Pries-Heje, J., & Madsen, S. (2011). Post-
Agility: What Follows a Decade of Agility? Information
and Software Technology, 53(5), 543-555.

Batra, D., Xia, W., VanderMeer, D., & Dutta, K. (2010).
Balancing Agile and Structured Development Approaches
to Successfully Manage Large Distributed Software
Projects: A Case Study From the Cruise Line Industry.
Communications of the Association for Information
Systems, 27(1), article 21, 379-394.

Beck, K. (1999). Embracing Change with eXtreme
Programming. IEEE Computer, 32(10), 70-77.

Beck, K. (2000). Extreme Programming: Embrace Change (1st
ed.). Indianapolis: Addison-Wesley.

Boehm, B., & R. Turner. (2004). Balancing Agility and
Discipline: A Guide for the Perplexed. Boston: Addison-
Wesley Professional.

Cockburn, A. (2001). Writing Effective Use Cases. Boston:
Addison-Wesley.

Cockburn, A., & Highsmith, J. (2001). Agile Software
Development, the People Factor. Computer, 34(11), 131-
133.

Cohn, M. (2004). User Stories Applied: For Agile Software
Development. Boston; Addison-Wesley.

Cram, W. A., & Brohman, M. K. (2013). Controlling
Information Systems Development: A New Typology for
an Evolving Field. Information Systems Journal, 23(2),
137-154.

Dhir, S., Kumar, D., & Singh, V.B. (2019). Success and Failure
Factors That Impact on Project Implementation Using
Agile Software Development Methodology. In: Hoda, M.,
Chauhan, N., Quadri, S., & Srivastava, P. (eds) Software
Engineering. Advances in Intelligent Systems and
Computing, 731, 647-654. Singapore: Springer.
https://doi.org/10.1007/978-981-10-8848-3_62

Digital.ai (2021). 15th State of Agile Report: Agile Adoption
Accelerates Across the Enterprise.
https://stateofagile.com/#ufh-i-661275008-15th-state-of-
agile-report/7027494

Dikert, K., Paasivaara, M., & Lassenius, C. (2016). Challenges
and Success Factors for Large-Scale Agile
Transformations: A Systematic Literature Review. Journal
of Systems and Software, 119, 87-108.
http://doi.org/https://doi.org/10.1016/j.jss.2016.06.013

Dingsøyr, T., & Moe, N. B. (2014). Towards Principles of
Large-Scale Agile Development (pp. 1-8). Presented at the
International Conference on Agile Software Development.

Feng, S., & Salmela, H. (2020). Mapping IS Curriculum
Research Areas: A Systematic Literature Review from
2010 to 2019. Included in the Proceedings of the AIS SIG-
ED 2020.

Fitzgerald, B., Hartnett, G., & Conboy, K. (2006). Customising
Agile Methods to Software Practices at Intel Shannon.
European Journal of Information Systems, 15(2), 200-213.

Fowler, M. (2003). Patterns of Enterprise Application
Architecture. Boston: Addison-Wesley.

Gemino, A., Horner Reich, B., & Serrador, P. M. (2021). Agile,
Traditional, and Hybrid Approaches to Project Success: Is
Hybrid a Poor Second Choice? Project Management
Journal, 52(2), 161-175.

Gerster, R., Dremel, C., Brenner, W., & Kelker, P. (2020). How
Enterprises Adopt Agile Forms of Organizational Design:

Journal of Information Systems Education, 34(2), 148-178, Spring 2023

177

A Multiple-Case Study. The Data Base for Advances in
Information Systems, 51(1), 84-103.

Grady, R. (1992). Practical Software Metrics for Project
Management and Process Improvement. Upper Saddle
River, NJ: Prentice-Hall.

Harb, Y. A., Noteboom, C., & Sarnikar, S. (2015). Evaluating
project characteristics for selecting the best-fit agile
software development methodology: a teaching case.
Journal of Midwest Association of Information Systems,
1(1), 33-51.

Hastie, S., & S. Wojewoda. (2015). Standish Group 2015
Chaos Report – Q&A with Jennifer Lynch.
https://www.infoq.com/articles/standish-chaos-2015

Highsmith, J. (2010). Agile Project Management: Creating
Innovative Products. Pearson Education.

Jacobson, I., Spence, I., & Kerr, B. (2016). Use-case 2.0.
Communications of the ACM, 59(5), 61-69.

Knaster, R. & Leffingwell, D. (2017). SAFe 4.0 Distilled:
Applying the Scaled Agile Framework for Lean Software
and Systems Engineering. Boston: Addison-Wesley.

Landry, J., & McDaniel, R. (2016). Agile Preparation within a
Traditional Project Management Course. Information
Systems Education Journal, 14(6), 27-33.

Larman, C., & B. Vodde. (2017). Large-Scale Scrum: More
with LeSS. Boston: Addison-Wesley.

Leffingwell, D. (2007). Scaling Software Agility: Best
Practices for Large Enterprises. Boston: Pearson
Education.

Leffingwell, D. (2011). Agile Software Requirements: Lean
Requirements Practices for Teams, Programs, and the
Enterprise. Boston: Pearson Education.

Leffingwell, D., Knaster, R., Oren, I., & Jemilo, D. (2018).
SAFe Reference Guide. Scaled Agile, Inc.

Leidig, P., & Salmela, H. (2021). IS2020 A Competency Model
for Undergraduate Programs in Information Systems, AIS
and ACM. https://dl.acm.org/citation.cfm?id=3460863

Marek, K., Wińska, E., & Dąbrowski, W. (2021). The State of
Agile Software Development Teams During the COVID-19
Pandemic. In: Przybyłek, A., Miler, J., Poth, A., Riel, A.
(eds) Lean and Agile Software Development. LASD 2021.
Lecture Notes in Business Information Processing, 408.
Springer, Cham. https://doi.org/10.1007/978-3-030-67084-
9_2

McAvoy, J., & Sammon, D. (2005). Agile Methodology
Adoption Decisions: An Innovative Approach to Teaching
and Learning. Journal of Information Systems Education,
16(4), 409-420.

McKendrick, J. (2020). Culture Still Keeps Eating Agile
Software Strategies for Breakfast, ZDNet (blog), June 6,
2020, https://www.zdnet.com/article/culture-still-keeps-
eating-agile-software-strategies-for-breakfast/

Nelson, R. R., & Morris, M. G. (2014). IT Project Estimation:
Contemporary Practices and Management Guidelines. MIS
Quarterly Executive, 13(1), 15-30.

Niederman, F., Lechler, T., & Petit, Y. (2018). A Research
Agenda for Extending Agile Practices in Software
Development and Additional Task Domains. Project
Management Journal, 49(6), 3-17.

Rubin, K. S. (2013). Essential Scrum: A Practical Guide to the
Most Popular Agile Process. Upper Saddle River, NJ:
Addison-Wesley.

Rush, D. E., & Connolly, A. J. (2020). An Agile Framework for
Teaching With Scrum in the It Project Management
Classroom. Journal of Information Systems Education,
31(3), 196-207.

Sarker, S., & Sarker, S. (2009). Exploring Agility in Distributed
Information Systems Development Teams: An Interpretive
Study in an Offshoring Context. Information Systems
Research, 20(3), 440-461.

Schwaber, K. (1995). SCRUM Development Process.
Proceedings of the 10th Annual ACM Conference on Object
Oriented Programming Systems, Languages, and
Applications (OOPSLA).

Schwaber, K., & Beedle, M. (2002). Agile Software
Development with Scrum. Upper Saddle River, NJ:
Prentice-Hall.

Sharp, J. H., & Lang, G. (2018). Agile in Teaching and
Learning: Conceptual Framework and Research Agenda.
Journal of Information Systems Education, 29(2), 45-52.

Sharp, J., & Lang, G. (2021). IS 2020 and a Snapshot of the
Current State of Systems Analysis and Design. Presented in
the Proceedings of AIS SIGED 2020.

Sharp, J. H., Mitchell, A., & Lang, G. (2020). Agile Teaching
and Learning in Information Systems Education: An
Analysis and Categorization of Literature. Journal of
Information Systems Education, 31(4), 269-281.

Spurrier, G., & Topi, H. (2017). When Is Agile Appropriate for
Enterprise Software Development? Proceedings of the 25th
European Conference on Information Systems, ECIS 2017
(pp. 2536-2545), Guimarães, Portugal: AIS.

Spurrier, G., & Topi, H. (2020a). A Holistic SA&D Approach
to Agile, Plan-Driven and Hybrid Systems Project Options.
Proceedings of the 26th Americas Conference on
Information Systems, AMCIS 2020, Salt Lake City, Utah:
AIS.

Spurrier, G., & Topi, H. (2020b). Selecting the Optimal
Systems Project Approach. Proceedings of the 21st ACM
Annual Conference on Information Technology Education,
SIGITE 2020, Omaha, Nebraska: ACM.

Spurrier, G., & Topi, H. (2021). Systems Analysis & Design in
an Age of Options. Burlington, VT: Prospect Press.

The Standish Group. (2015). “Chaos Report 2015.”
https://www.standishgroup.com/store/services/chaos-
report-2015-blue-pm2go-membership.html

Vinekar, V., Slinkman, C. W., & Nerur, S. (2006). Can Agile
and Traditional Systems Development Approaches
Coexist? An Ambidextrous View. Information Systems
Management, 23(3), 31-42.

Wake, B. (2003). INVEST in Good Stories, and SMART Tasks.
XP123. https://xp123.com/articles/invest-in-good-stories-
and-smart-tasks/

West, D., Gilpin, M., Grant, T., & Anderson, A. (2011). Water-
Scrum-Fall Is The Reality Of Agile For Most Organizations
Today. Forrester.

Williams, L., & Cockburn, A. (2003). Agile Software
Development: It’s About Feedback and Change. Computer,
36(6), 39-43.

Journal of Information Systems Education, 34(2), 148-178, Spring 2023

178

AUTHOR BIOGRAPHIES

Gary Spurrier is a visiting scholar at Bentley University. He
has been an Assistant Professor of
Practice of Management Information
Systems at the University of
Alabama. Further, he has held many
industry positions in information
technology, including CIO, COO,
project leader for enterprise-level
software projects, commercial off
the shelf (COTS) software product

manager, and IT and operations consultant. He earned his Ph.D.
in MIS at Indiana University-Bloomington. His research
focuses on enterprise software development and systems
analysis and design.

Heikki Topi is professor of computer information systems at

Bentley University. His Ph.D. in
Management Information Systems is
from Indiana University. His
research focuses on systems
development methodologies,
information systems education, and
human factors and usability in the
context of enterprise systems. His
scholarly output includes journal

articles, conference papers, large-scale edited volumes,
textbooks, and curriculum recommendations (including IS2010
and MSIS2016 as task force co-chair). He has served the IS
education community in multiple leadership positions,
including AIS Vice President of Education.

Information Systems & Computing Academic Professionals

Education Special Interest Group

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2023 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN: 2574-3872 (Online) 1055-3096 (Print)

	JISE 2023 34(2) 148-178 First Page
	e-2201002 Final-TCS-LAM
	2.1 The Essence of Agile, Plan-Driven, and Hybrid Software Development

	JISE 2023 34(2) Copyright ISSN

